Comune di Gubbio PIANO REGOLATORE GENERALE PARTE STRUTTURALE **RELAZIONE** (studi di microzonazione sismica ai sensi della deliberazione della Giunta Regionale 14 marzo 2001, n. 226 e successive modifiche e integrazioni) Dott. Geol. Gloria Ruspi _ (coordinatore) Dott. Geol. Stefano Merangola Dott. Geol. Arnaldo Ridolfi Dott. Geol. Stefano Tosti

Indice

VOLUME 06

27 R	ELAZIONE SPAZIO URBANO MACROAREA 28 CASACCE	1241
27.1	- Caratteristiche geologiche	1241
27.1	. 0 30	1241
27.1	2 - Geometria delle formazioni	1241
27.1	.3 - Tipo di contatto, spessore e sua variabilita'	1241
27.2	- Caratteristiche geomorfologiche	1241
27.3	- Schema idrogeologico generale e permeabilita' relative dei terreni	
	e delle rocce	1242
27.4	- Caratteristiche litotecniche	1242
27.4	.1 - Unità litotecniche del substrato	1242
27.5	- Indagini geognostiche di riferimento	1242
27.6	- Indagini geognostiche eseguite	1243
27.7	- Cartografia di sintesi	1243
27.7	1 - Carta delle zone suscettibili di amplificazione o instabilita' dinamiche	
	locali	1243
27.7	2 - Carta del rischio sismico: classi di amplificazione sismica locale	1243
27.	7.2.1 - Classe A	1243
27.7	3 - Documentazione fotografica	1244
27.7		1245
28 R	ELAZIONE SPAZIO URBANO MACROAREA 29 OSTERIA	
S	ANTA CRISTINA	1246
28.1	- Caratteristiche geologiche	1246
28.1		1246
28.1.	0 00	1246
28.1	J ~	1246
28.2	- Caratteristiche geomorfologiche	1246
28.3	- Schema idrogeologico generale e permeabilita' relative dei terreni	
	e delle rocce	1247
28.4	- Caratteristiche litotecniche	1247
28.4		1247
28.5	- Indagini geognostiche di riferimento	1248
28.6	- Indagini geognostiche eseguite	1248
28.7	- Cartografia di sintesi	1248
28.7		12.0
20.7	locali	1248
28	7.1.1 - Zone 6	1248
28.7		1248
	7.2.1 - Classe B	1249
28.7		1249
28.7	v e v	1250
29 R	ELAZIONE SPAZIO URBANO MACROAREA 30 SANTA CRISTINA	1253
29.1	- Caratteristiche geologiche	1253
29.1		1253
29.1	. 0 30	1253
29.1	J .	1253
29.2	- Caratteristiche geomorfologiche	1253
- /•	Sai and white formal forestate	1433

29.3	- Schema idrogeologico generale e permeabilita' relative dei terreni	
	e delle rocce	1254
29.4	- Caratteristiche litotecniche	1254
29.4.1	- Unità litotecniche del substrato	1254
29.5	- Indagini geognostiche di riferimento	1255
29.6	- Indagini geognostiche eseguite	1255
29.7	- Cartografia di sintesi	1255
29.7.1	- Carta delle zone suscettibili di amplificazione o instabilita' dinamiche	1200
27.7.1	locali	1255
29.7.1.1		1255
29.7.2	- Carta del rischio sismico: classi di amplificazione sismica locale	1255
	- Classe B	1255
29.7.2.1	- Documentazione fotografica	1256
29.7.4	- Cartografia	1257
30 RELAZ	ZIONE SPAZIO URBANO MACROAREA 31 CAMPOREGGIANO	1258
30.1	- Caratteristiche geologiche	1258
30.1.1	- Descrizione degli affioramenti	1258
30.1.2	- Geometria delle formazioni	1258
30.1.3	- Tipo di contatto, spessore e sua variabilita'	1258
30.2	- Caratteristiche geomorfologiche	1258
30.3	- Schema idrogeologico generale e permeabilita' relative dei terreni	1259
	e delle rocce	1259
30.4	- Caratteristiche litotecniche	1259
30.4.1	- Unità litotecniche della copertura e/o basamento alterato	1259
30.4.2	- Unità litotecniche del substrato	1260
30.5	- Indagini geognostiche di riferimento	1260
30.6	- Indagini geognostiche eseguite	1260
30.7	- Cartografia di sintesi	1260
30.7.1	- Carta delle zone suscettibili di amplificazione o instabilita' dinamiche	
	locali	1260
30.7.1.1	- Zone 7	1260
30.7.1.2	- Zone 8	1261
30.7.1.3	- Zone 9	1261
	- Carta del rischio sismico: classi di amplificazione sismica locale	1261
	- Classe A	1261
	- Classe B	1261
30.7.3	- Diagrafie indagini geognostiche	1262
30.7.4	- Documentazione fotografica	1280
30.7.5	- Cartografia	1281
31 RELAZ	ZIONE SPAZIO URBANO MACROAREA 32 MOCAIANA	1282
31.1	- Caratteristiche geologiche	1282
31.1.1	- Geometria delle formazioni	1282
31.1.2	- Tipo di contatto, spessore e sua variabilita'	1282
31.2	- Caratteristiche geomorfologiche	1282
31.3	- Schema idrogeologico generale e permeabilita' relative dei terreni	
	e delle rocce	1282
31.4	- Caratteristiche litotecniche	1282
31.4.1	- Unità litotecniche della copertura	1283
31.5	- Indagini geognostiche di riferimento	1283
31.6	- Indagini geognostiche eseguite	1283
31.7	- Cartografia di sintesi	1283

1283 1283
1202
1403
1283
1284
1323
1334
1335
1335
1335
1335
1335
1335
1336
1336
1336
1336
1336
1336
1336
1336
1336
1337
1343
1344
1344
1344
1344
1344
1344
1345
1345
1346
1346
1346
1346
1346
1346
1347
1347
1347
1347
1347
1348 1338

27 RELAZIONE SPAZIO URBANO MACROAREA 28 CASACCE

(Dott. Geol. Stefano Merangola – Loc. Belvedere)

27.1 Caratteristiche geologiche

La zona studiata è inserita nell'area montana compresa tra la Valtiberina e la conca di Gubbio.

Nella zona affiora la formazione Marnoso Arenacea e l'area è ubicata sul fianco orientale di una struttura antiforme asimmetrica. Gli strati sono hanno immersione verso NNE ed inclinazione di 35° poco distante dell'abitato di Belvedere. Mentre nell'area di M. S. Martino l'inclinazione passa a circa 75°.

La struttura plicativa è il risultato prodotto da un campo di stress regionale compressivo iniziato nel Miocene sup..

27.1.1 Descrizione degli affioramenti

Nella macroarea denominata Casacce affiora quasi sempre la formazione Marnoso Arenacea (v. Foto1). La coltre di alterazione della formazione rocciosa quando presente è costituita da limi sabbiosi bruni con spessore di alcuni decimetri.

Gli strati arenacei della Marnoso Arenacea hanno un colore giallognolo e grigio scuro, sono gradati e presentano generalmente un basso sorting e un arrotondamento dei granuli insignificante. Il loro spessore è variabile da circa 10 cm a 2 m. All'interno degli strati arenacei è possibile riconoscere sequenze di Bouma più o meno complete, con predominanza di intervalli Tb,c,e. Sono evidenti anche impronte di fondo, di diversa natura, che denotano l'azione di correnti trattive provenienti da NW. Queste possono essere classificate come lithic graywackes. I vari strati arenacei sono separati da livelli marnosi e argillosi/marnosi grigiastri con spessore che supera abbondantemente i 2 m.

27.1.2 Geometria delle formazioni

La formazione affiorante è la Marnoso Arenacea e vista la limitata dimensione dell'area possiamo assumere che la geometria sia regolare la con potenza degli strati costante.

27.1.3 Tipo di contatto, spessore e sua variabilità

L'unico contatto presente nell'area è di tipo stratigrafico e riguarda il passaggio tra la copertura ed il bedrock, che è di tipo erosivo e si presenta con andamento che ricalca quello dei suoli. Lo spessore della coltre è al massimo 40-50 cm

27.2 Caratteristiche geomorfologiche

Il sito in esame è ubicato lungo un piccolo crinale situato sullo spartiacque tra due bacini minori del F. Tevere. Ad est del crinale si sviluppa il F.so Rio che rappresenta un affluente del secondo ordine del F. Tevere mentre ad occidente si sviluppa il T. Ventia il quale rappresenta a sua volta un affluente del primo ordine in sinistra idraulica del F. Tevere.

La macroarea presenta una pendenza di pochi gradi con andamento costante e piccole rotture di pendio dovute alla presenza di strati rocciosi più resistenti. Essa è posta ad una quota compresa tra 610 m e 620 m. s. l. m..

L'attuale assetto morfologico è tipico delle aree di affioramento dei litotipi marnoso arenacei, caratterizzate da colline con cime arrotondate e versanti poco inclinati.

Nei dintorni del sito in esame l'urbanizzazione è rappresentata dalla frazione di Belvedere e l'area è attualmente destinata a prato pascolo.

Per quanto riguarda la zona esaminata non sono stati riscontrati fenomeni di instabilità, né di ristagno delle acque meteoriche.

Per la determinazione del rapporto altezza/larghezza del crinale è stato realizzato un profilo topografico da cui risulta:

• Profilo 1
$$h/L = \frac{19}{259} = 0.07$$

Valori < 0.1 non determinano fenomeni di amplificazione sismica locale.

27.3 Schema idrogeologico generale e permeabilità relative dei terreni e delle rocce

I litotipi presenti su tutta l'area sono poco permeabili con locali variazioni di permeabilità.

Le acque meteoriche sono smaltite rapidamente da fossati e da canali che formano un reticolo idrografico a pattern dendritico, fortemente controllato dalla tettonica.

Piccoli fossati incanalano le acque superficiali fino a farle confluire nei collettori principali posti a valle e rappresentati dai torrenti minori con aste del primo e secondo ordine.

Il regime di questi fossati è torrentizio e legato in maniera diretta alle precipitazioni atmosferiche.

La falda risulta posizionata ad una di profondità di almeno 40-50 m e legata alla presenza di banconi arenacei o calcarenitici di notevole spessore.

27.4 Caratteristiche litotecniche

Il substrato marnoso-arenaceo è inquadrabile nella categoria materiale lapideo stratificato, costituito da un'alternanza di diversi litotipi a predominanza argillosa identificato con la sigla **L2B3**.

27.4.1 Unità litotecniche del substrato

Il substrato affiora o è ricoperto da una modesta coltre di suolo per tutta la macroarea in oggetto. Questo è costituito dalla formazione Marnoso Arenacea, potente flysch di età miocenica, formato da una sequenza ritmica di strati e banchi arenacei massivi, alternati ad orizzonti argilloso-marnosi che chiude verso l'alto la serie litostratigrafica dell'Appenninico Umbro-Marchigiano. Gli strati arenacei hanno un colore giallognolo e grigio scuro, sono gradati e presentano generalmente un basso sorting e un arrotondamento dei granuli insignificante. Il loro spessore è variabile da circa 10 cm a 2 m. I vari strati arenacei sono separati da livelli marnosi e argillosi/marnosi grigiastri con spessore che supera abbondantemente i 2 m.

A vari livelli sono presenti intercalati, strati calcarenitici con spessore che va dal decimetro al metro.

27.5 Indagini geognostiche di riferimento

Nell'area non esistono prove geognostiche di riferimento

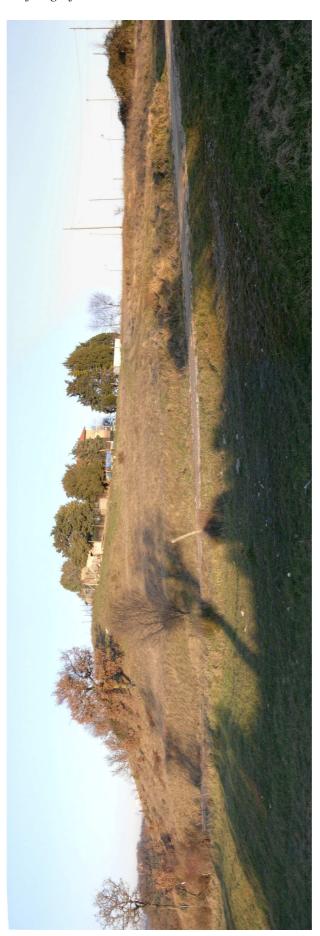
27.6 Indagini geognostiche eseguite

Nell'area non state eseguite indagini geognostiche in quanto è presente il bedrock marnoso arenaceo.

27.7 Cartografia di sintesi

27.7.1 Carta delle zone suscettibili di amplificazione o instabilità dinamiche locali L'area in oggetto non presenta zone suscettibili di amplificazione sismica o di instabilità dinamiche locali.

27.7.2 Carta del rischio sismico: classi di amplificazione sismica locale


Tale carta è la carta di sintesi finale che tiene conto di tutti i risultati delle indagini effettuate nell'area, di quelle di riferimento ove ce ne fossero e della cartografia fin qui prodotta. Le classi di rischio relative ai terreni microzonati, sono indicate nell'elaborato E7 "Carta del rischio sismico" nelle seguenti tavole: Foglio 38 (41 I). Le varie aree vengono quindi divise in quattro classi di amplificazione sismica locale:

- Classe A amplificazione bassa o nulla
- Classe B amplificazione media
- Classe C amplificazione elevata
- Classe D amplificazione molto elevata

27.7.2.1 Classe A

Tutta l'area rientra nella classe di amplificazione A bassa o nulla poiché presenta il substrato affiorante.

27.7.3 Documentazione fotografica

27.7.4 Cartografia

- legenda carta geologica;
- carta geologica su C.T.R. a scala 1:5.000;
- profili geologici e di suscettibilità sismica locale a scala 1:2.000;
- legenda carta geomorfologica;
- carta geomorfologica su C.T.R. a scala 1:5.000;
- profili topografici per la determinazione del rapporto h/L dei crinali
- legenda carta litotecnica;
- carta litotecnica su C.T.R. a scala 1:5.000;
- profili litotecnici a scala 1:2.000;
- legenda carta delle aree suscettibili di amplificazione sismica;
- carta delle aree suscettibili di amplificazione sismica su C.T.R. a scala 1:5.000

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA GEOLOGICA

COMPLESSO TERRIGENO UMBRO

FORMAZIONE MARNOSO ARENACEA

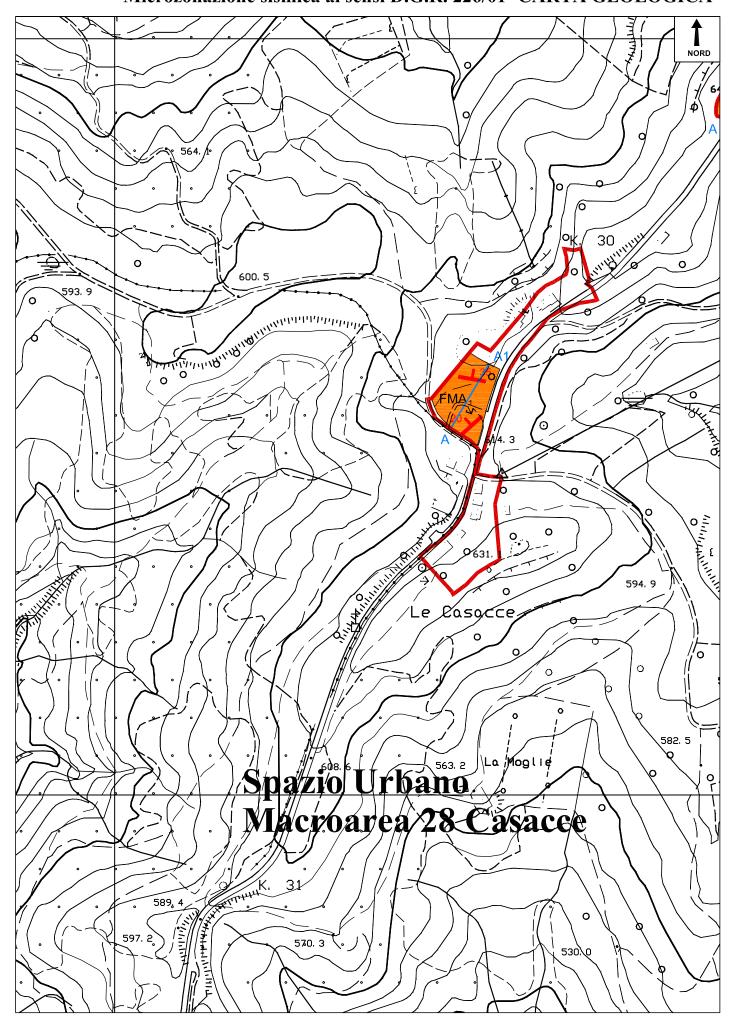
Alternanza di arenarie torbiditiche, marne e marne siltose con rapporto arenaria/pelite in genere minore di 1. Sono presenti megastrati, sia arenitici di provenienza alpina che calcarenitici, utilizzabili come strati guida.

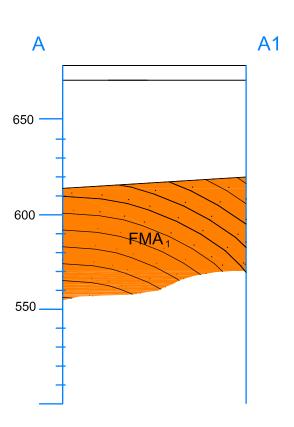
Membro 1

(associazione pelitico arenacea calcarenitica basale)

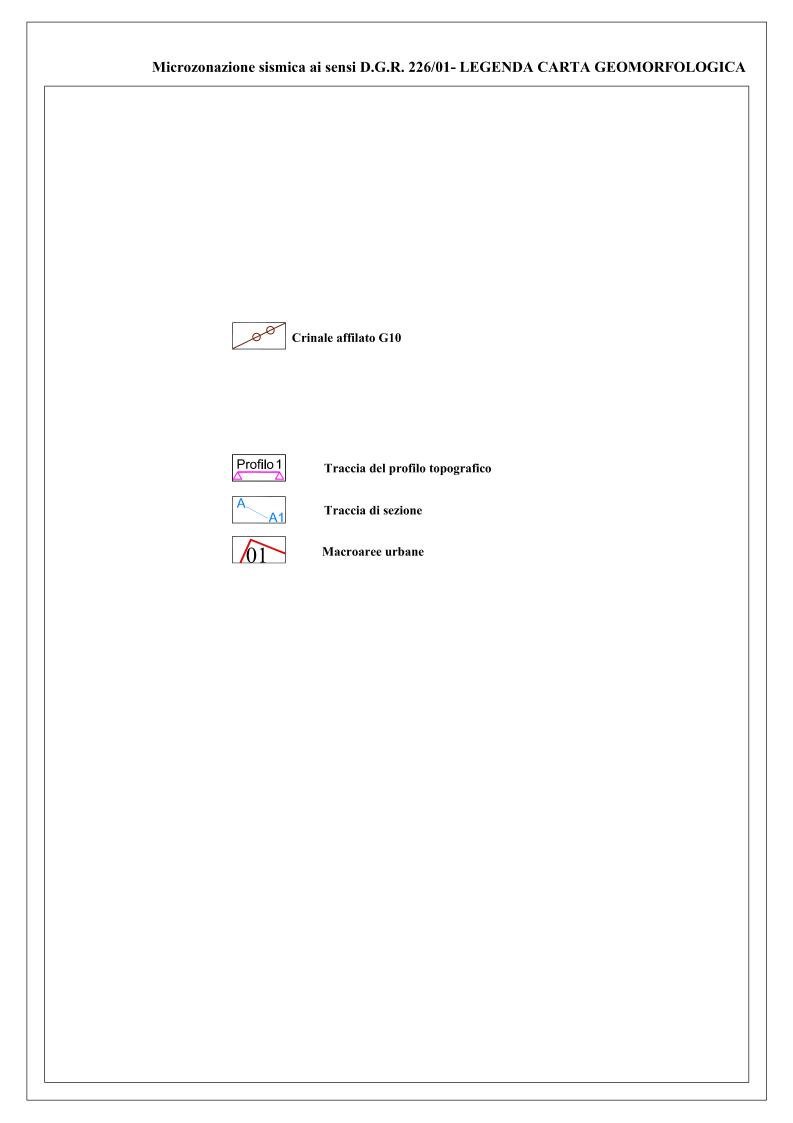
Torbiditi pelitico arenacee e calcareo clastiche in strati da sottili a molto spessi con rapporto A/P molto variabile ma in genere <1/4. Contiene lo strato Contessa (Cs) e numerosi altri strati notevoli, con caratteristiche tali da essere potenzialmente utilizzabili come strati guida. La parte di successione posta subito al di sopra del Contessa e la parte sommitale del membro corrispondono a litozone caratterizzate dal rapido susseguirsi di strati calcarenitici di spessore variabile compreso tra 0.2 m a 1.5 m circa e molto ravvicinati fra loro (almeno 8 strati in circa 100 m di successione). Lo spessore non è precisamente valutabile poiché non affiora la base.

Langhiano superiore-Serravalliano superiore

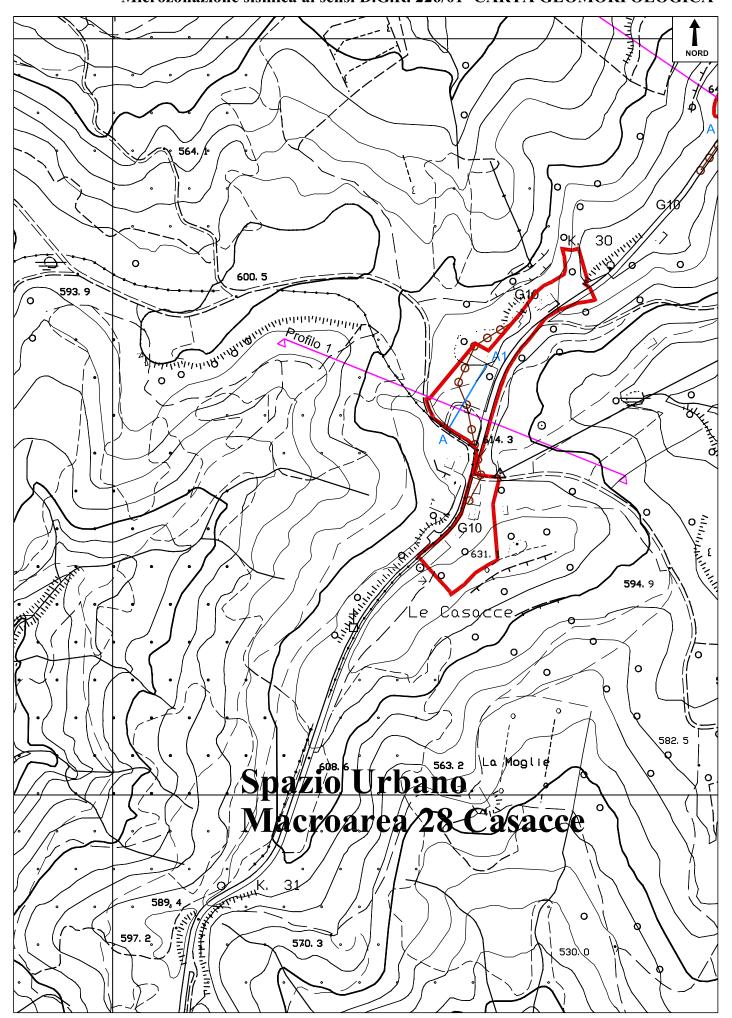

Giacitura ed inclinazione degli strati

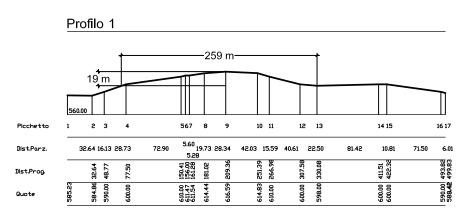


Traccia di sezione



scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOLOGICA




Spazio Urbano Macroarea 28 Casacce

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOMORFOLOGICA

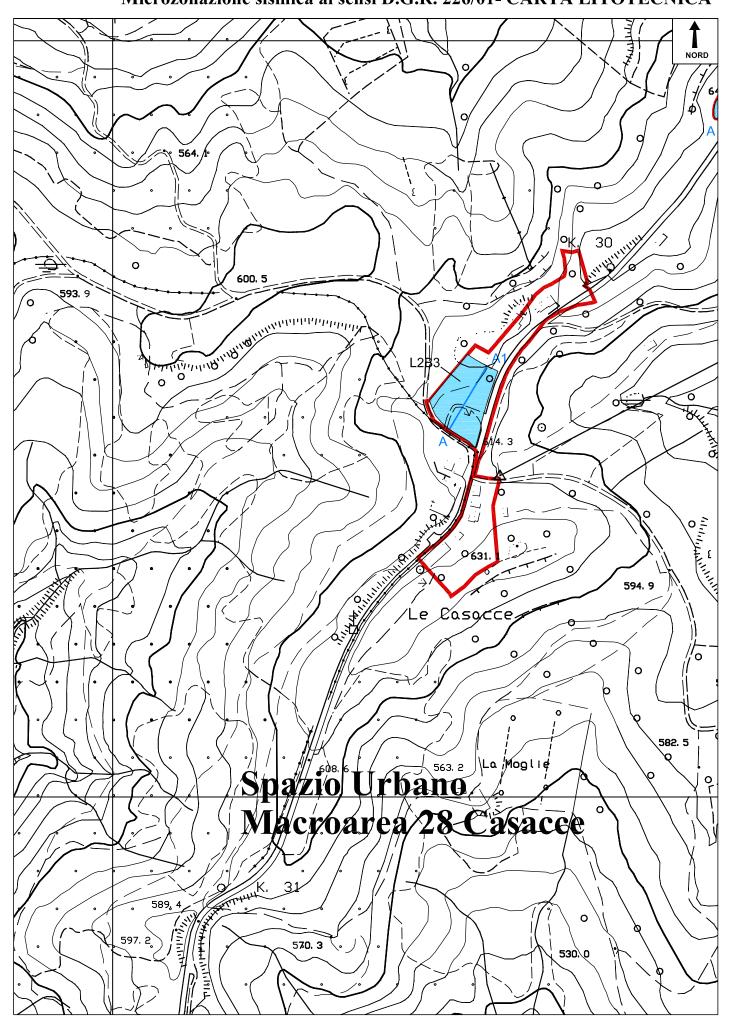
Microzonazione sismica ai sensi D.G.R. 226/01- PROFILO TOPOGRAFICO

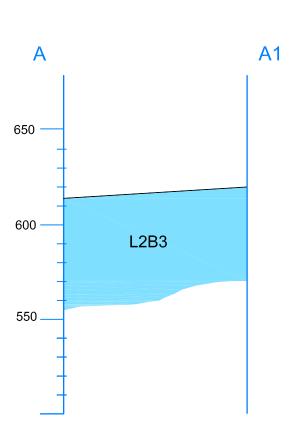
Spazio Urbano Macroarea 28 Casacce

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA LITOTECNICA

SUBSTRATO

Materiale lapideo stratificato o costituito da alternanze di diversi litotipi:


- L2B1 più litotipi stratificati (a predominanza di calcari, calcari marnosi o arenarie)
- L2B2 più litotipi stratificati (senza predominanza di calcari e argille)
- L2B3 più litotipi stratificati (a predominanza di argille)



Traccia di sezione

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA LITOTECNICA

Spazio Urbano Macroarea 30 Casacce

wiicrozonazione s	sismica ai sensi D.G.R. 226/01- LEGENDA CARTA DELLE ZONE SUSCETTII AMPLIFICAZIONE SISMICA O INSTABILITA' DINAMICHE I
	A Traccia di sezione
	Macroaree urbane

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA DELLE ZONE SUSCETTIBILI DI AMPLIFICAZIONE SISMICA O INSTABILITA' DINAMICHE LOCALI NORD 564 30 600. 5 July Mingling Minding the Market Mark Le lasocce о' 0 0 582. 5 563, 2 \La Moglie 570**. 3** 530.0

28 RELAZIONE SPAZIO URBANO MACROAREA 29 OSTERIA SANTA CRISTINA

(Dott. Geol. Stefano Merangola – Loc. Santa Cristina)

La macroarea 29 Osteria Santa Cristina si compone di due aree disposte una a nord denominata M. Folone ed una a sud denominata Osteria.

28.1 Caratteristiche geologiche

La zona studiata è inserita nell'area montana compresa tra la Valtiberina e la conca di Gubbio.

Nella zona affiora la formazione Marnoso Arenacea e l'area è ubicata sul fianco orientale di una struttura antiforme asimmetrica. Gli strati sono hanno immersione verso NNE ed inclinazione di 20° .

La struttura plicativa è il risultato prodotto da un campo di stress regionale compressivo iniziato nel Miocene sup..

28.1.1 Descrizione degli affioramenti

Nella macroarea 29 Osteria Santa Cristina affiora la formazione Marnoso Arenacea. La zona di M. Folone presenta un substrato affiorante su tutta la superficie (v. Foto1-2), mentre l'area Osteria presenta una coltre di alterazione della formazione rocciosa con spessore generalmente inferiore al metro (v. Foto3). La coltre di alterazione della formazione rocciosa quando presente è costituita da limi sabbiosi bruni con spessore di alcuni decimetri.

Gli strati arenacei della Marnoso Arenacea hanno un colore giallognolo e grigio scuro, sono gradati e presentano generalmente un basso sorting e un arrotondamento dei granuli insignificante. Il loro spessore è variabile da circa 20 cm a 2 m. All'interno degli strati arenacei è possibile riconoscere sequenze di Bouma più o meno complete, con predominanza di intervalli Tb,c,e. Sono evidenti anche impronte di fondo, di diversa natura, che denotano l'azione di correnti trattive provenienti da NW. Queste possono essere classificate come lithic graywackes. I vari strati arenacei sono separati da livelli marnosi e argillosi/marnosi grigiastri con spessore che supera abbondantemente i 2 m.

28.1.2 Geometria delle formazioni

La formazione affiorante è la Marnoso Arenacea e vista la limitata dimensione dell'area possiamo assumere che la geometria sia regolare la con potenza degli strati costante.

28.1.3 Tipo di contatto, spessore e sua variabilità

L'unico contatto presente nell'area è di tipo stratigrafico e riguarda il passaggio tra la copertura ed il bedrock, che è di tipo erosivo e si presenta con andamento che ricalca quello dei suoli.

28.2 Caratteristiche geomorfologiche

Il sito in esame è ubicato lungo un crinale situato sullo spartiacque tra due bacini minori del F. Tevere. Ad est del crinale si sviluppa il T. Ventia mentre ad occidente si sviluppa il T. Resina i quali rappresentano a loro volta affluenti del primo ordine in sinistra idraulica del F. Tevere.

L'area M. Folone presenta una pendenza di pochi gradi con andamento costante e piccole rotture di pendio dovute alla presenza di strati rocciosi più resistenti. Essa è posta ad una quota compresa tra 630 m e 650 m s. l. m..

La zona Osteria presenta invece una pendenza che a tratti raggiunge anche i 12° ed è posta ad una quota compresa tra 600 m e 610 m s. l. m..

L'attuale assetto morfologico è tipico delle aree di affioramento dei litotipi marnoso arenacei, caratterizzate da colline con cime arrotondate e versanti poco inclinati.

Nei dintorni del sito in esame l'urbanizzazione è rappresentata dalla frazione di di S. Cristina e l'area è attualmente destinata a prato pascolo e uliveto.

Per quanto riguarda la zona esaminata non sono stati riscontrati fenomeni di instabilità, né di ristagno delle acque meteoriche.

Per la determinazione del rapporto altezza/larghezza del crinale è stato realizzato un profilo topografico per ogni zona da cui risulta:

• Profilo 1
$$h/L = \frac{45}{347} = 0.13$$

• Profilo 2
$$h/L = \frac{103}{644} = 0.16$$

Valori compresi tra 0.1 e 0.2 determinano fenomeni di amplificazione sismica locali.

28.3 Schema idrogeologico generale e permeabilità relative dei terreni e delle rocce

I litotipi presenti su tutta l'area sono poco permeabili con locali variazioni di permeabilità.

Le acque meteoriche sono smaltite rapidamente da fossati e da canali che formano un reticolo idrografico a pattern dendritico, fortemente controllato dalla tettonica.

Piccoli fossati incanalano le acque superficiali fino a farle confluire nei collettori principali posti a valle e rappresentati dai torrenti minori con aste del primo e secondo ordine.

Il regime di questi fossati è torrentizio e legato in maniera diretta alle precipitazioni atmosferiche.

La falda risulta posizionata ad una di profondità di almeno 20-30 m e legata alla presenza di banconi arenacei o calcarenitici di notevole spessore.

28.4 Caratteristiche litotecniche

Il substrato marnoso-arenaceo è inquadrabile nella categoria materiale lapideo stratificato, costituito da un'alternanza di diversi litotipi a predominanza argillosa identificato con la sigla **L2B3**.

28.4.1 Unità litotecniche del substrato

Il substrato affiora o è ricoperto da una modesta coltre di suolo per tutta la macroarea in oggetto. Questo è costituito dalla formazione Marnoso Arenacea, potente flysch di età miocenica, formato da una sequenza ritmica di strati e banchi arenacei massivi, alternati ad orizzonti argilloso-marnosi che chiude verso l'alto la serie litostratigrafica dell'Appenninico Umbro-Marchigiano. Gli strati arenacei hanno un colore giallognolo e grigio scuro, sono gradati e presentano generalmente un basso sorting e un arrotondamento dei granuli insignificante. Il loro spessore è variabile da circa 20 cm a 2

m. I vari strati arenacei sono separati da livelli marnosi e argillosi/marnosi grigiastri con spessore che supera abbondantemente i 2 m.

A vari livelli sono presenti intercalati, strati calcarenitici con spessore che va dal decimetro al metro.

28.5 Indagini geognostiche di riferimento

Nell'area non esistono prove geognostiche di riferimento

28.6 Indagini geognostiche eseguite

Nell'area non state eseguite indagini geognostiche in quanto è presente il bedrock marnoso arenaceo.

28.7 Cartografia di sintesi

28.7.1 Carta delle zone suscettibili di amplificazione o instabilità dinamiche locali

Dalle carte Morfologica e Litotecnica, facenti parte di questo studio, viene derivata la "carta delle zone suscettibili di amplificazione o instabilità dinamiche locali", rispetto ad un moto sismico di riferimento. La carta fornisce una perimetrazione areale delle diverse situazioni morfostratigrafiche. I numeri non fanno riferimento a situazioni di pericolosità crescente, in quanto ciascuna area possiede una sua identità sia in relazione alle caratteristiche geologiche e morfologiche che a quelle dell'evento sismico.

28.7.1.1 Zone 6

La zona 6 evidenzia aree con possibile amplificazione del moto sismico legata a particolarità morfologiche. L'area di Osteria risulta localizzata nei pressi di un crinale il cui rapporto altezza/larghezza è compreso tra 0.1 e 0.2 per cui l'area ricade nella zona 6.

L'area M. Folone è situato lungo il versante di cocuzzolo il cui rapporto altezza/larghezza è compreso tra 0.1 e 0.2 per cui l'area ricade nella zona 6.

28.7.2 Carta del rischio sismico: classi di amplificazione sismica locale

Tale carta è la carta di sintesi finale che tiene conto di tutti i risultati delle indagini effettuate nell'area, di quelle di riferimento ove ce ne fossero e della cartografia fin qui prodotta. Le classi di rischio relative ai terreni microzonati, sono indicate nell'elaborato E7 "Carta del rischio sismico" nelle seguente tavola: Foglio 33 (37 IV). Le varie aree vengono quindi divise in quattro classi di amplificazione sismica locale:

- Classe A amplificazione bassa o nulla
- Classe B amplificazione media
- Classe C amplificazione elevata
- Classe D amplificazione molto elevata

28.7.2.1 Classe B

In questa classe rientra la macroarea interamente in quanto pur presentando il substrato affiorante ricadono nella zona 6 con il rapporto altezza/larghezza del crinale o del cocuzzolo compreso tra 0.1 e 0.2.

28.7.3 Documentazione fotografica Foto 1

Foto 2

Foto 3

28.7.4 Cartografia

- legenda carta geologica;
- carta geologica su C.T.R. a scala 1:5.000;
- profili geologici e di suscettibilità sismica locale a scala 1:2.000;
- legenda carta geomorfologica;
- carta geomorfologica su C.T.R. a scala 1:5.000;
- profili topografici per la determinazione del rapporto h/L dei crinali
- legenda carta litotecnica;
- carta litotecnica su C.T.R. a scala 1:5.000;
- profili litotecnici a scala 1:2.000;
- legenda carta delle aree suscettibili di amplificazione sismica;
- carta delle aree suscettibili di amplificazione sismica su C.T.R. a scala 1:5.000

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA GEOLOGICA

COMPLESSO TERRIGENO UMBRO

FORMAZIONE MARNOSO ARENACEA

Alternanza di arenarie torbiditiche, marne e marne siltose con rapporto arenaria/pelite in genere minore di 1. Sono presenti megastrati, sia arenitici di provenienza alpina che calcarenitici, utilizzabili come strati guida.

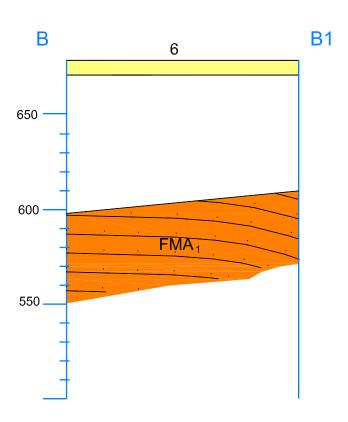
Membro 1

(associazione pelitico arenacea calcarenitica basale)

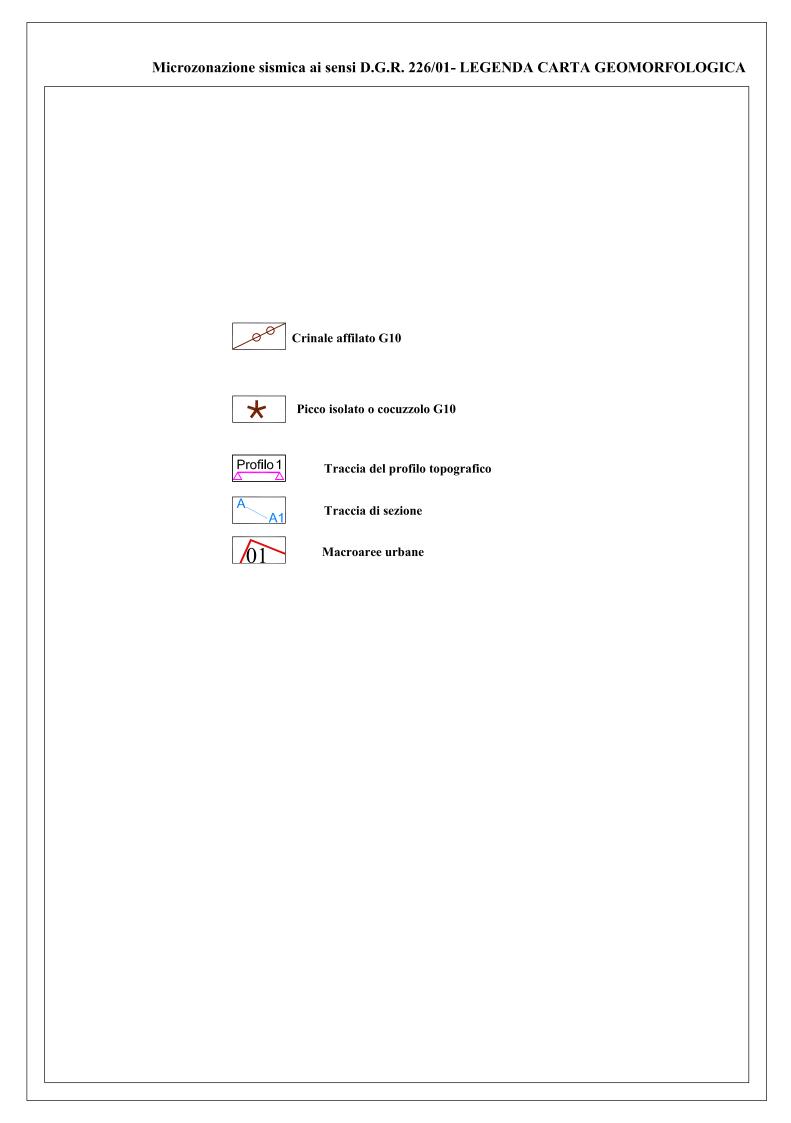
Torbiditi pelitico arenacee e calcareo clastiche in strati da sottili a molto spessi con rapporto A/P molto variabile ma in genere <1/4. Contiene lo strato Contessa (Cs) e numerosi altri strati notevoli, con caratteristiche tali da essere potenzialmente utilizzabili come strati guida. La parte di successione posta subito al di sopra del Contessa e la parte sommitale del membro corrispondono a litozone caratterizzate dal rapido susseguirsi di strati calcarenitici di spessore variabile compreso tra 0.2 m a 1.5 m circa e molto ravvicinati fra loro (almeno 8 strati in circa 100 m di successione). Lo spessore non è precisamente valutabile poiché non affiora la base.

Langhiano superiore-Serravalliano superiore

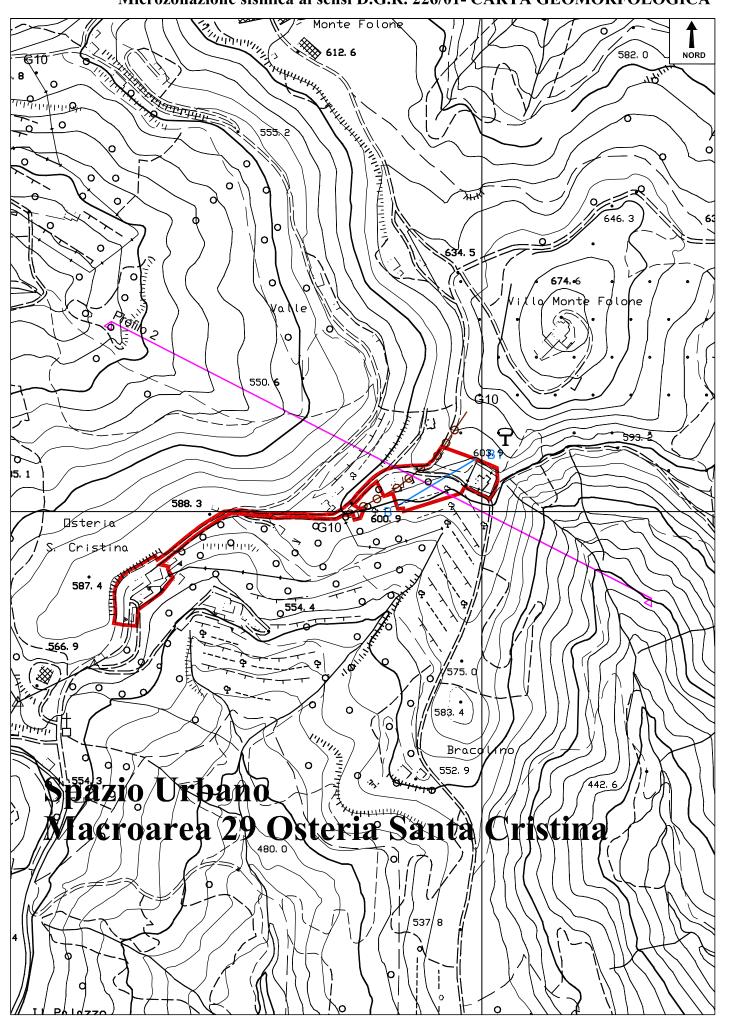
Giacitura ed inclinazione degli strati

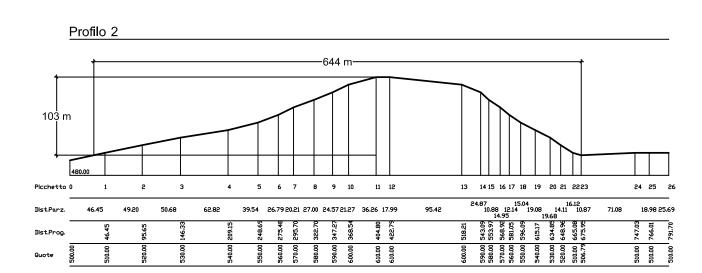


Traccia di sezione



scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOLOGICA





Spazio Urbano Macroarea 29 Osteria Santa Cristina

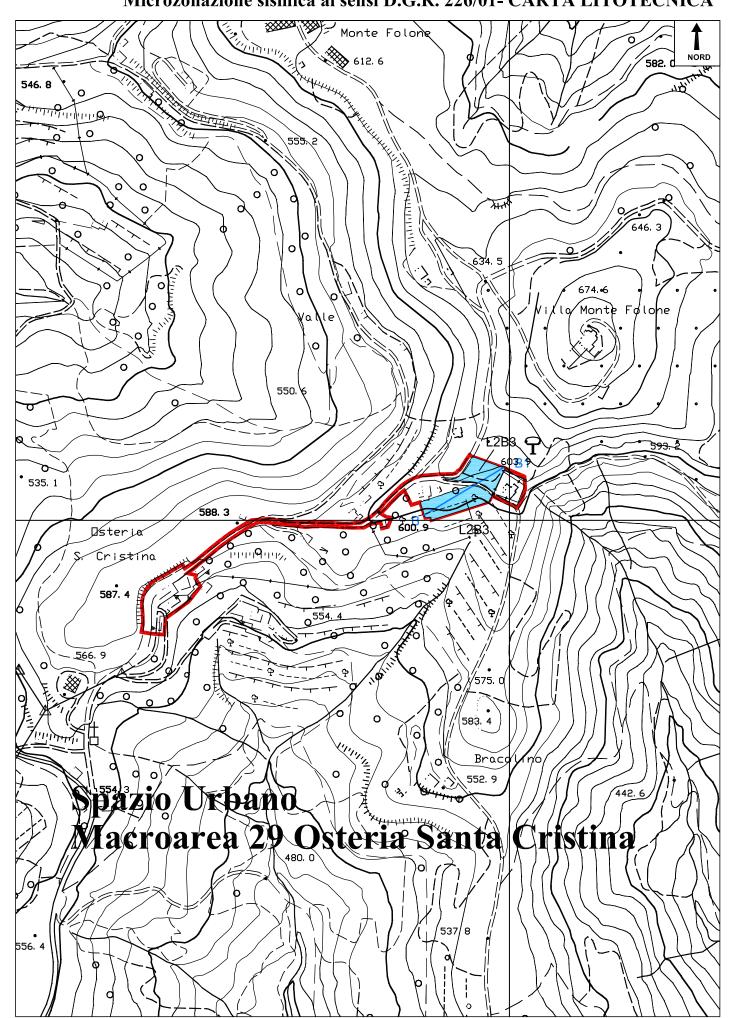
scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOMORFOLOGICA

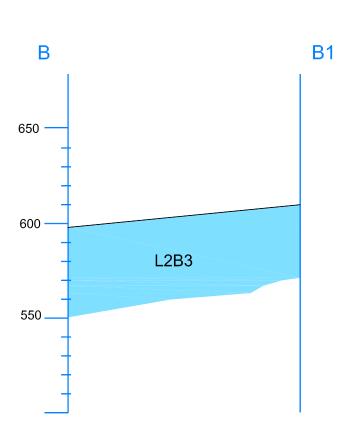
Spazio Urbano Macroarea 29 Osteria Santa Cristina

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA LITOTECNICA

SUBSTRATO

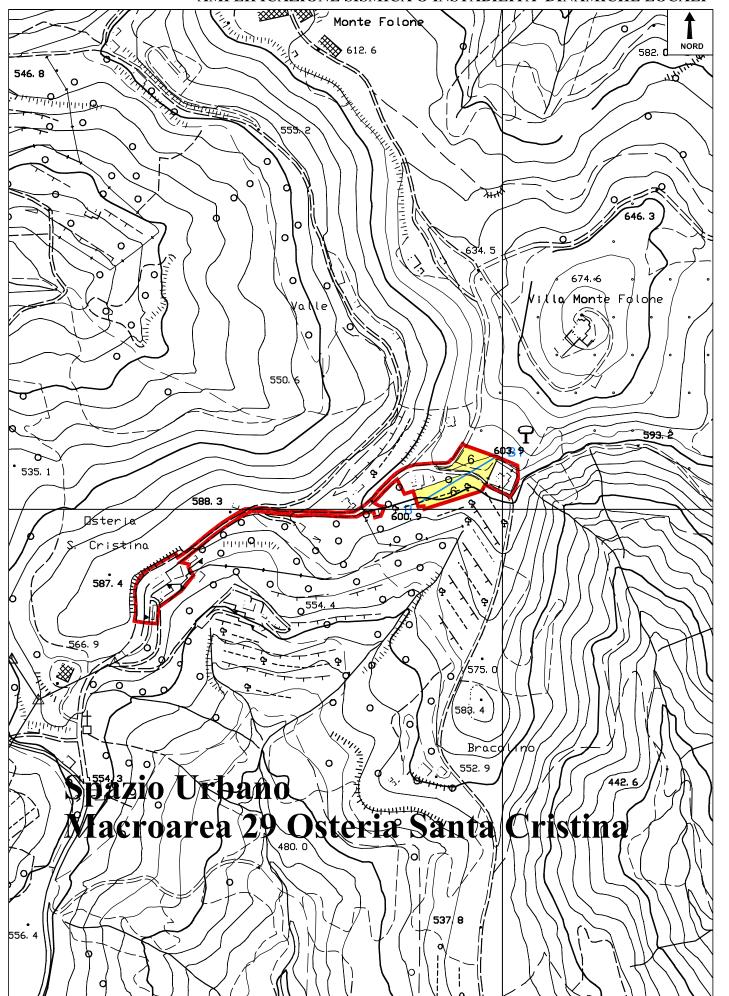
Materiale lapideo stratificato o costituito da alternanze di diversi litotipi:


- L2B1 più litotipi stratificati (a predominanza di calcari, calcari marnosi o arenarie)
- L2B2 più litotipi stratificati (senza predominanza di calcari e argille)
- L2B3 più litotipi stratificati (a predominanza di argille)



Traccia di sezione

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA LITOTECNICA



Spazio Urbano Macroarea 29 Osteria Santa Cristina

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA DELLE ZONE SUSCETTIBILI DI AMPLIFICAZIONE SISMICA O INSTABILITA' DINAMICHE LOCALI

	AMPLIFICAZ	ZIONE SISMICA O INSTABILITA' DINAMICHE LOCALI
TIPOLOGI	A DELLE SITUAZIONI	RIFERIMENTO NELLE CARTE DI BASE
6	Zona di crinale affilato o cocuzzolo	G10
A A1	Traccia di sezione	
01	Macroaree urbane	

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA DELLE ZONE SUSCETTIBILI DI AMPLIFICAZIONE SISMICA O INSTABILITA' DINAMICHE LOCALI Monte Folone NORD 582. **d**

29 RELAZIONE SPAZIO URBANO MACROAREA 30 SANTA CRISTINA

(Dott. Geol. Stefano Merangola – Loc. S. Cristina)

La macroarea è localizzata nei pressi della chiesa parrocchiale e del cimitero di S. Cristina.

29.1 Caratteristiche geologiche

La zona studiata è inserita nell'area montana compresa tra la Valtiberina e la conca di Gubbio.

Nella zona affiora la formazione Marnoso Arenacea e l'area è ubicata sul fianco orientale di una struttura antiforme asimmetrica. Gli strati sono hanno immersione verso NNE ed inclinazione di 20° nella parte settentrionale della macroarea mentre nella parte centrale sono suborizzontale.

La struttura plicativa è il risultato prodotto da un campo di stress regionale compressivo iniziato nel Miocene sup..

29.1.1 Descrizione degli affioramenti

Nella macroarea 30 Santa Cristina affiora la formazione Marnoso Arenacea. La zona presenta un substrato affiorante su tutta la superficie (v. Foto1) e la coltre di alterazione della formazione rocciosa quando presente è costituita da limi sabbiosi bruni con spessore di alcuni decimetri.

Gli strati arenacei della Marnoso Arenacea hanno un colore giallognolo e grigio scuro, sono gradati e presentano generalmente un basso sorting e un arrotondamento dei granuli insignificante. Il loro spessore è variabile da circa 20 cm a 2 m. All'interno degli strati arenacei è possibile riconoscere sequenze di Bouma più o meno complete, con predominanza di intervalli Tb,c,e. Sono evidenti anche impronte di fondo, di diversa natura, che denotano l'azione di correnti trattive provenienti da NW. Queste possono essere classificate come lithic graywackes. I vari strati arenacei sono separati da livelli marnosi e argillosi/marnosi grigiastri con spessore che supera abbondantemente i 2 m.

29.1.2 Geometria delle formazioni

La formazione affiorante è la Marnoso Arenacea e vista la limitata dimensione dell'area possiamo assumere che la geometria sia regolare la con potenza degli strati costante.

29.1.3 Tipo di contatto, spessore e sua variabilità

L'unico contatto presente nell'area è di tipo stratigrafico e riguarda il passaggio tra la copertura ed il bedrock, che è di tipo erosivo e si presenta con andamento che ricalca quello dei suoli.

29.2 Caratteristiche geomorfologiche

Il sito in esame è ubicato lungo un crinale situato sullo spartiacque tra due bacini minori del F. Tevere. Ad est del crinale si sviluppa il T. Ventia mentre ad occidente si sviluppa il T. Resina i quali rappresentano a loro volta affluenti del primo ordine in sinistra idraulica del F. Tevere.

La macroarea presenta una pendenza di 12°-13° con andamento costante e piccole rotture di pendio dovute alla presenza di strati rocciosi più resistenti. Essa è posta ad una quota compresa tra 490 m e 530 m s. l. m..

L'attuale assetto morfologico è tipico delle aree di affioramento dei litotipi marnoso arenacei, caratterizzate da colline con cime arrotondate e versanti poco inclinati.

Nei dintorni del sito in esame l'urbanizzazione è rappresentata da pochi casolari l'area è attualmente destinata a prato pascolo e uliveto.

Per quanto riguarda la zona esaminata non sono stati riscontrati fenomeni di instabilità, né di ristagno delle acque meteoriche.

Per la determinazione del rapporto altezza/larghezza del crinale sono stati realizzati due profili topografici cui risulta:

• Profilo 1
$$h/L = \frac{68}{423} = 0.16$$

• Profilo 2
$$h/L = \frac{73}{393} = 0.19$$

Valori compresi tra 0.1 e 0.2 determinano fenomeni di amplificazione sismica locali.

29.3 Schema idrogeologico generale e permeabilità relative dei terreni e delle rocce

I litotipi presenti su tutta l'area sono poco permeabili con locali variazioni di permeabilità.

Le acque meteoriche sono smaltite rapidamente da fossati e da canali che formano un reticolo idrografico a pattern dendritico, fortemente controllato dalla tettonica.

Piccoli fossati incanalano le acque superficiali fino a farle confluire nei collettori principali posti a valle e rappresentati dai torrenti minori con aste del primo e secondo ordine.

Il regime di questi fossati è torrentizio e legato in maniera diretta alle precipitazioni atmosferiche.

La falda risulta posizionata ad una di profondità di almeno 20-30 m e legata alla presenza di banconi arenacei o calcarenitici di notevole spessore.

29.4 Caratteristiche litotecniche

Il substrato marnoso-arenaceo è inquadrabile nella categoria materiale lapideo stratificato, costituito da un'alternanza di diversi litotipi a predominanza argillosa identificato con la sigla **L2B3**.

29.4.1 Unità litotecniche del substrato

Il substrato affiora o è ricoperto da una modesta coltre di suolo per tutta la macroarea in oggetto. Questo è costituito dalla formazione Marnoso Arenacea, potente flysch di età miocenica, formato da una sequenza ritmica di strati e banchi arenacei massivi, alternati ad orizzonti argilloso-marnosi che chiude verso l'alto la serie litostratigrafica dell'Appenninico Umbro-Marchigiano. Gli strati arenacei hanno un colore giallognolo e grigio scuro, sono gradati e presentano generalmente un basso sorting e un arrotondamento dei granuli insignificante. Il loro spessore è variabile da circa 20 cm a 2 m. I vari strati arenacei sono separati da livelli marnosi e argillosi/marnosi grigiastri con spessore che supera abbondantemente i 2 m.

A vari livelli sono presenti intercalati, strati calcarenitici con spessore che va dal decimetro al metro.

29.5 Indagini geognostiche di riferimento

Nell'area non esistono prove geognostiche di riferimento

29.6 Indagini geognostiche eseguite

Nell'area non state eseguite indagini geognostiche in quanto è presente il bedrock marnoso arenaceo.

29.7 Cartografia di sintesi

29.7.1 Carta delle zone suscettibili di amplificazione o instabilità dinamiche locali

Dalle carte Morfologica e Litotecnica, facenti parte di questo studio, viene derivata la "carta delle zone suscettibili di amplificazione o instabilità dinamiche locali", rispetto ad un moto sismico di riferimento. La carta fornisce una perimetrazione areale delle diverse situazioni morfostratigrafiche. I numeri non fanno riferimento a situazioni di pericolosità crescente, in quanto ciascuna area possiede una sua identità sia in relazione alle caratteristiche geologiche e morfologiche che a quelle dell'evento sismico.

29.7.1.1 Zone 6

La zona 6 evidenzia aree con possibile amplificazione del moto sismico legata a particolarità morfologiche. La macroarea risulta localizzata nei pressi di un crinale il cui rapporto altezza/larghezza è compreso tra 0.1 e 0.2 per cui l'area ricade nella zona 6.

29.7.2 Carta del rischio sismico: classi di amplificazione sismica locale

Tale carta è la carta di sintesi finale che tiene conto di tutti i risultati delle indagini effettuate nell'area, di quelle di riferimento ove ce ne fossero e della cartografia fin qui prodotta. Le classi di rischio relative ai terreni microzonati, sono indicate nell'elaborato E7 "Carta del rischio sismico" nelle seguente tavola: Foglio 32 (36 I). Le varie aree vengono quindi divise in quattro classi di amplificazione sismica locale:

- Classe A amplificazione bassa o nulla
- Classe B amplificazione media
- Classe C amplificazione elevata
- Classe D amplificazione molto elevata

29.7.2.1 Classe B

In questa classe rientra la macroarea interamente in quanto pur presentando il substrato affiorante ricadono nella zona 6 con il rapporto altezza/larghezza del crinale o del cocuzzolo compreso tra 0.1 e 0.2.

29.7.3 Documentazione fotografica Foto 1

29.7.4 Cartografia

- legenda carta geologica;
- carta geologica su C.T.R. a scala 1:5.000;
- profili geologici e di suscettibilità sismica locale a scala 1:2.000;
- legenda carta geomorfologica;
- carta geomorfologica su C.T.R. a scala 1:5.000;
- profili topografici per la determinazione del rapporto h/L dei crinali
- legenda carta litotecnica;
- carta litotecnica su C.T.R. a scala 1:5.000;
- profili litotecnici a scala 1:2.000;
- legenda carta delle aree suscettibili di amplificazione sismica;
- carta delle aree suscettibili di amplificazione sismica su C.T.R. a scala 1:5.000

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA GEOLOGICA

COMPLESSO TERRIGENO UMBRO

FORMAZIONE MARNOSO ARENACEA

Alternanza di arenarie torbiditiche, marne e marne siltose con rapporto arenaria/pelite in genere minore di 1. Sono presenti megastrati, sia arenitici di provenienza alpina che calcarenitici, utilizzabili come strati guida.

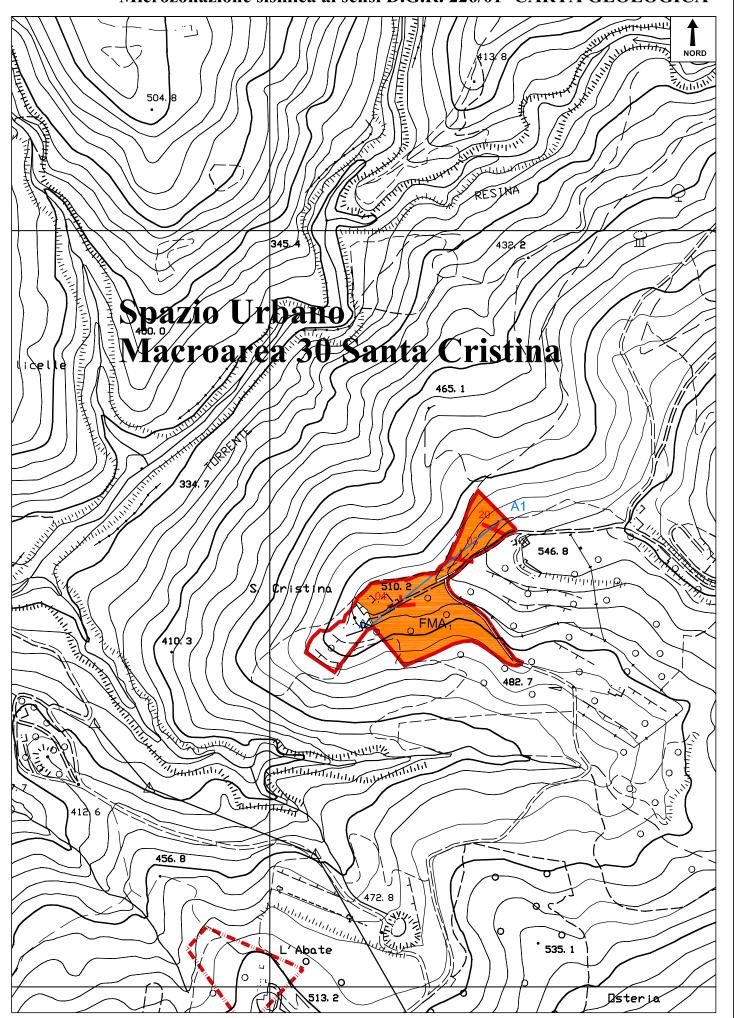
Membro 1

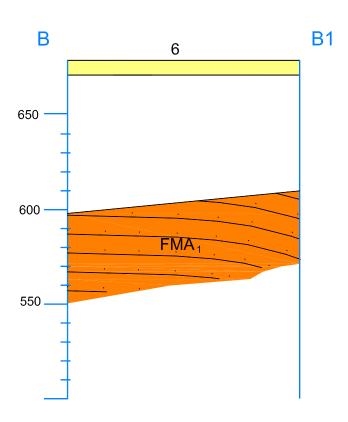
(associazione pelitico arenacea calcarenitica basale)

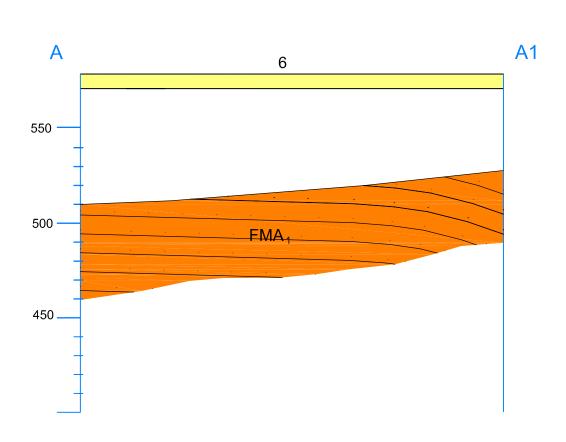
Torbiditi pelitico arenacee e calcareo clastiche in strati da sottili a molto spessi con rapporto A/P molto variabile ma in genere <1/4. Contiene lo strato Contessa (Cs) e numerosi altri strati notevoli, con caratteristiche tali da essere potenzialmente utilizzabili come strati guida. La parte di successione posta subito al di sopra del Contessa e la parte sommitale del membro corrispondono a litozone caratterizzate dal rapido susseguirsi di strati calcarenitici di spessore variabile compreso tra 0.2 m a 1.5 m circa e molto ravvicinati fra loro (almeno 8 strati in circa 100 m di successione). Lo spessore non è precisamente valutabile poiché non affiora la base.

Langhiano superiore-Serravalliano superiore

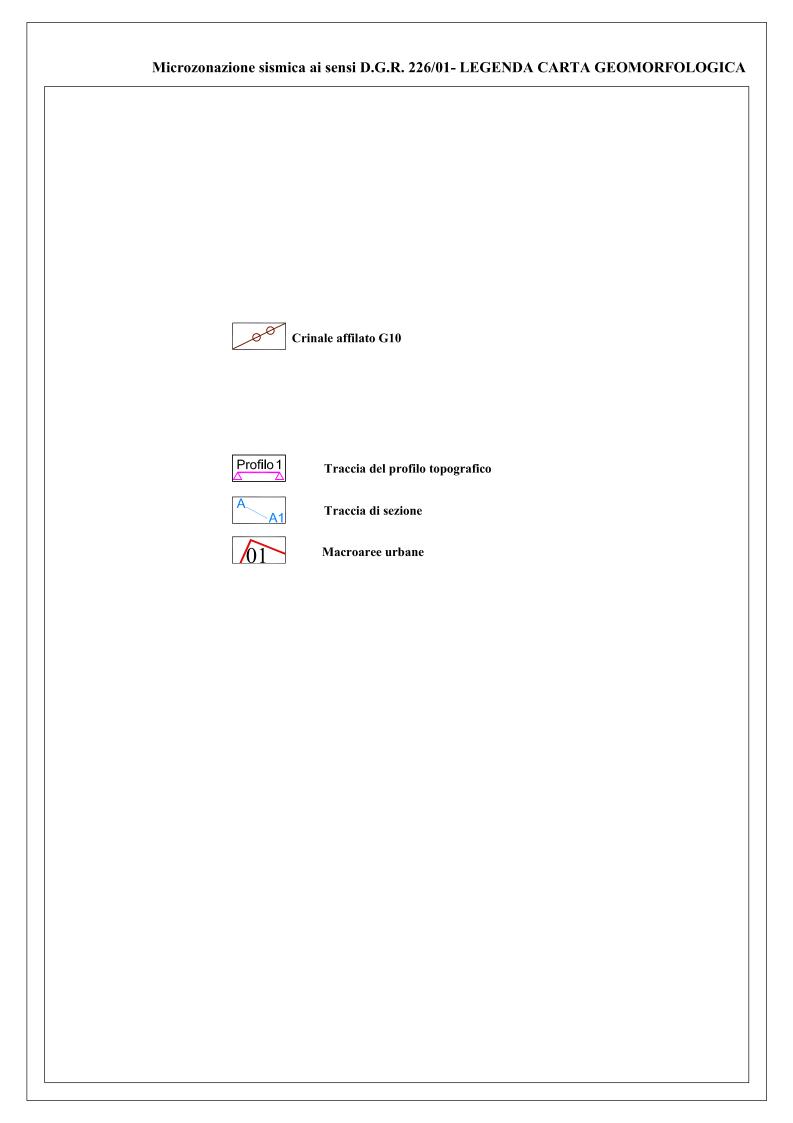
Giacitura ed inclinazione degli strati

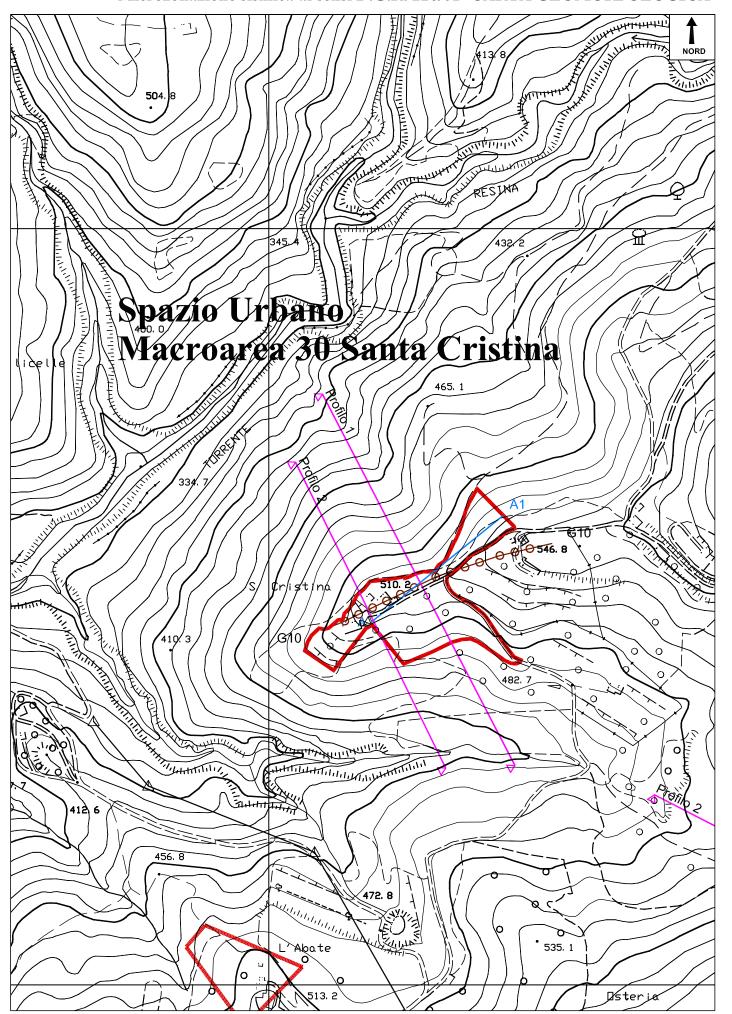


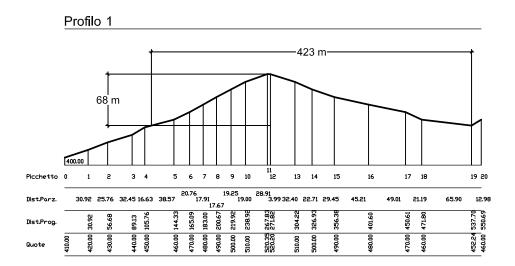

Traccia di sezione

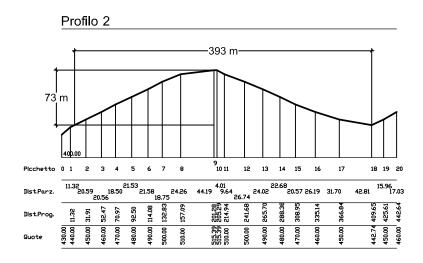

Macroaree urbane

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOLOGICA




Spazio Urbano Macroarea 29 Osteria Santa Cristina




Spazio Urbano Macroarea 30 Santa Cristina

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOMORFOLOGICA

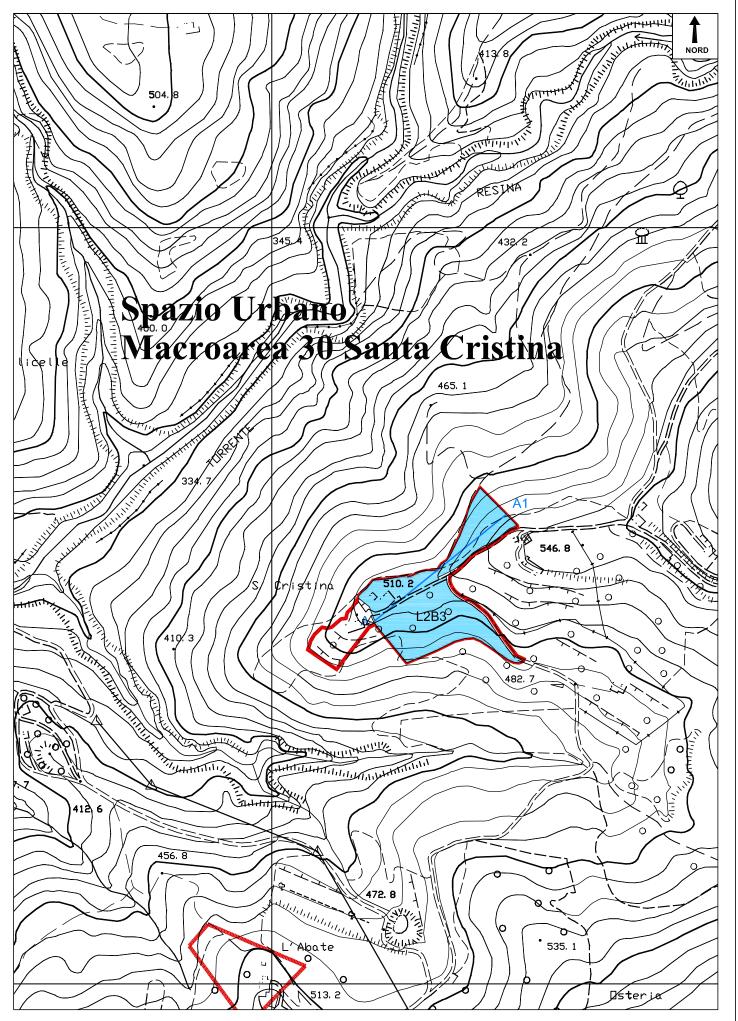
Spazio Urbano Macroarea 30 Santa Cristina

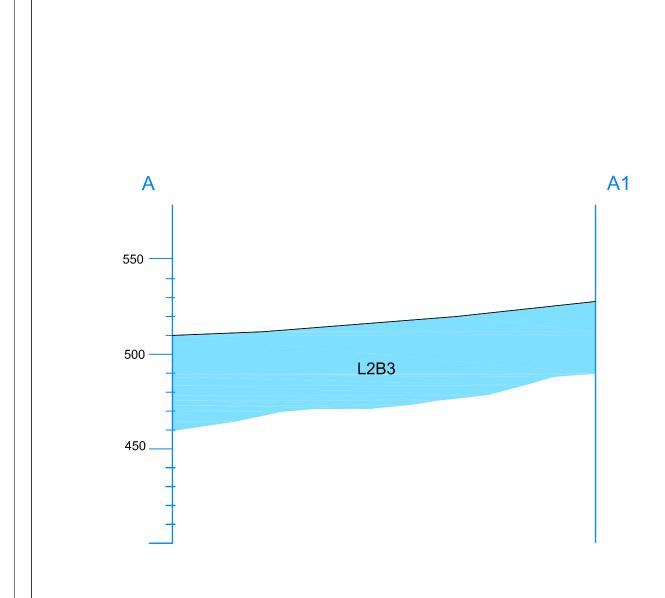
Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA LITOTECNICA

SUBSTRATO

Materiale lapideo stratificato o costituito da alternanze di diversi litotipi:

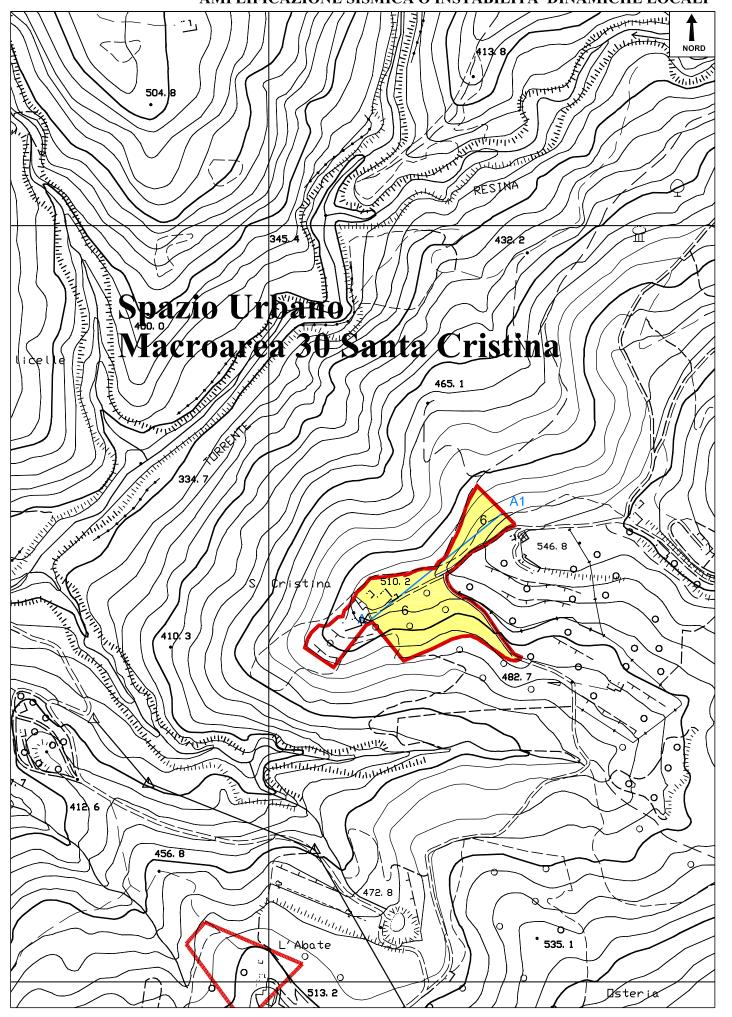
- L2B1 più litotipi stratificati (a predominanza di calcari, calcari marnosi o arenarie)
- L2B2 più litotipi stratificati (senza predominanza di calcari e argille)
- L2B3 più litotipi stratificati (a predominanza di argille)




Traccia di sezione

Macroaree urbane

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA LITOTECNICA



Spazio Urbano Macroarea 30 Santa Cristina

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA DELLE ZONE SUSCETTIBILI DI AMPLIFICAZIONE SISMICA O INSTABILITA' DINAMICHE LOCALI

	AMPLIFICAZ	ZIONE SISMICA O INSTABILITA' DINAMICHE LOCALI
TIPOLOGI	A DELLE SITUAZIONI	RIFERIMENTO NELLE CARTE DI BASE
6	Zona di crinale affilato o cocuzzolo	G10
A A1	Traccia di sezione	
01	Macroaree urbane	

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA DELLE ZONE SUSCETTIBILI DI AMPLIFICAZIONE SISMICA O INSTABILITA' DINAMICHE LOCALI

30 RELAZIONE SPAZIO URBANO MACROAREA 31 CAMPOREGGIANO

(Dott. Geol. Stefano Merangola – Loc. Camporeggiano)

Le aree di nuova edificazione sono poste in prossimità dell'abitato di Camporeggiano e disposte ai lati della s.s. 219 Pian d'Assino. Inoltre esiste una piccola area ubicata nella parte a nord della macroarea che è stata denominata Bivio Sioli.

30.1 Caratteristiche geologiche

L'area in esame è posta in prossimità della prima anticlinale esterna che borda ad oriente il graben del F. Tevere. La struttura plicativa originale è il risultato prodotto da un campo di stress regionale compressivo iniziato nel Miocene sup..

30.1.1 Descrizione degli affioramenti

Quello che è possibile vedere nella macroarea è costituito da terreni arati, scarpate stradali o sbancamenti, ma non si va oltre i tre metri di profondità nella parte a valle della s.s. 219 Pian d'Assino. Nella parte a monte della strada statale affiora la formazione della Marnoso Arenacea lungo delle scarpate naturali e sbancamenti per la realizzazione di edifici.

30.1.2 Geometria delle formazioni

Siccome si tratta di sedimenti eluvio-colluviali provenienti dai rilievi posti a nord, poggianti su un substrato roccioso inclinato verso SO ed intedigitati con i sedimenti lacustri, la geometria dei depositi è necessariamente cuneiforme o lenticolare con massimi spessori verso valle. Questi sedimenti poggiano in discordanza su di un substrato marnoso-arenaceo immergente verso SO ed inclinato di circa 15°.

30.1.3 Tipo di contatto, spessore e sua variabilità

I contatti sono sempre di natura stratigrafica. I depositi eluvio-colluviali presenti sopra il bedrock nella parte pedemontana sono interdigitati con quelli limo-argillosi lacustri della pianura per cui il loro spessore è estremamente variabile e generalmente aumenta spostandosi verso monte. Il sondaggio SM15 ha attraversato materiali alluvionali per 2.8 m, depositi eluvio-colluviali tra le profondità di 2.8 m e 6.0 m da p.c. prima di passare al substrato marnoso-arenaceo. Il contatto con quest'ultimo, è di tipo erosivo, così come sembra sia anche quello con le argille lacustri ed i depositi eluvio-colluviali dato che non è mai osservabile.

30.2 Caratteristiche geomorfologiche

La macroarea è posta ai lati del tracciato della s.s.219 nel tratto in cui attraversa la frazione. È posta ad una quota compresa tra 310 e 330 m s.l.m. ed una pendenza media di 15° nella parte a monte della strada statale mentre a valle è praticamente pianeggiante. Questi terreni si inseriscono nella fascia pedemontana di raccordo tra il crinale di Campaola e ed il fondovalle del T. Assino.

L'attuale assetto morfologico è tipico delle aree di affioramento dei litotipi marnoso arenacei, caratterizzate da colline con cime arrotondate e versanti poco inclinati.

Localmente, in corrispondenza di incisioni fluviali, i versanti sono interessati da forme più accidentate.

Il versante è delimitato sia ad E che ad O da fossi che sono affluenti in destra idraulica del primo ordine del T. Assino.

In occasione di forti precipitazioni si possono osservare fenomeni di ristagno delle acque meteoriche nella parte bassa più pianeggiante dell'area.

L'area non è urbanizzata ed è coltivata con colture stagionali, vigneti, uliveti e la parte pianeggiante è a pratopascolo. Per quanto riguarda la zona esaminata non sono stati riscontrati fenomeni di instabilità.

30.3 Schema idrogeologico generale e permeabilità relative dei terreni e delle rocce

I terreni esaminati denotano una permeabilità generalmente medio bassa, ed a volte si possono osservare fenomeni di ristagno delle acque. I sedimenti eluvio-colluviali, presentano lenti sabbiose e ghiaiose che hanno una permeabilità maggiore e che danno origine sui versanti a piccole venute d'acqua o zone di umidità laddove sono a contatto o con il substrato o con sedimenti più fini. L'idrografia superficiale è caratterizzata da una serie di fossi perimetrali che delimitano i vari appezzamenti coltivati, e che vanno a confluire poi nel collettore principale posto più a valle e rappresentato in questa zona dal Torrente Assino.

Le acque di provenienza meteorica vengono smaltite, in maggioranza da tutta questa rete di canaletti di scolo dato che i terreni superficiali presentano una permeabilità piuttosto bassa.

Nella zona la falda è confinata negli strati della formazione rocciosa ad una profondità di almeno 30 m da p.c..

30.4 Caratteristiche litotecniche

Da un punto di vista litotecnico, sedimenti presenti appartengono ad un'unica unità litotecnica classificabile come copertura costituita da materiali granulari sciolti o poco addensati a prevalenza limo-argillosa o sabbiosa o ciottolosa, identificati rispettivamente con le sigle L5c – L5b – L5a. Il substrato marnoso-arenaceo invece è inquadrabile nella categoria materiale lapideo stratificato, costituito da un'alternanza di diversi litotipi a predominanza argillosa identificato con la sigla L2B3.

30.4.1 Unità litotecniche della copertura e/o basamento alterato

Dai dati di superficie e dalle indagini eseguite, si è potuto constatare che i terreni in oggetto sono costituiti principalmente da depositi eluvio-colluviali che ricoprono il substrato, interdigitati verso valle con i depositi fluvio-lacustri della valle antistante.

I depositi eluvio-colluviali sono composti prevalentemente da limi-argillosi marroni con venature grigiastre contenenti lenti e livelli di sabbie e subordinatamente ghiaie a composizione arenacea. Il sondaggio SM15 ha attraversato i depositi eluvio-colluviali alla profondità compresa tra 2.8 m e 6.0 m dal p.c..

I depositi alluvionali della valle sono costituiti da limi, limi argillosi, sabbie e ghiaie in associazione variabile e con scarsa continuità laterale, con corpi aventi geometrie spesso lentiformi. Tali depositi sono stati attraversati dal sondaggio SM15 sino alla profondità di 2.8 m dal p.c..

30.4.2 Unità litotecniche del substrato

Il substrato affiora nella parte alta della zona a monte della s.s. 219 Pian d'Assino ed è stato incontrato nel sondaggio SM15 alla profondità di circa 6.0 metri. Questo è costituito dalla formazione Marnoso Arenacea, potente flysch di età miocenica, formato da una sequenza ritmica di strati e banchi arenacei massivi, alternati ad orizzonti argilloso-marnosi che chiude verso l'alto la serie litostratigrafica dell'Appenninico Umbro-Marchigiano. Gli strati arenacei hanno un colore giallognolo e grigio scuro, sono gradati e presentano generalmente un basso sorting e un arrotondamento dei granuli insignificante. Il loro spessore è variabile da circa 20 cm a 150 cm. I vari strati arenacei sono separati da livelli marnosi e argilloso/marnosi grigiastri. A vari livelli sono presenti intercalati, strati calcarenitici dello spessore superiore al metro.

30.5 Indagini geognostiche di riferimento

Nell'area non esistono prove geognostiche di riferimento

30.6 Indagini geognostiche eseguite

All'interno della Macroarea 34 Camporeggiano è stato eseguito il sondaggio SM15 a carotaggio continuo spinto fino alla profondità di 10 metri. Inoltre è stato eseguito un profilo sismico a Rifrazione RzM09 lungo 115 metri e tre prove penetrometriche dinamiche Pdphs M33, M34 e M45 spinte a raggiungere il substrato. La prova M33 ha raggiunto il substrato alla profondità di 3.6 m dal p.c., la prova M34 lo ha raggiunto alla profondità di 4.2 m da p.c.; queste prove sono state realizzate a valle dell'abitato. Nella area denominata Bivio Sioli è stata realizzata la prova M45 che ha attraversato materiali pluvio-colluviali sino alla profondità di circa 3.0 m dal p.c..

30.7 Cartografia di sintesi

30.7.1 Carta delle zone suscettibili di amplificazione o instabilità dinamiche locali

Dalle carte Morfologica e Litotecnica, facenti parte di questo studio, viene derivata la "carta delle zone suscettibili di amplificazione o instabilità dinamiche locali", rispetto ad un moto sismico di riferimento. La carta fornisce una perimetrazione areale delle diverse situazioni morfostratigrafiche. I numeri non fanno riferimento a situazioni di pericolosità crescente, in quanto ciascuna area possiede una sua identità sia in relazione alle caratteristiche geologiche e morfologiche che a quelle dell'evento sismico.

30.7.1.1 Zone 7

La zona 7 evidenzia aree di fondovalle con possibile amplificazione del moto sismico legate in primo luogo alla diversa impedenza sismica tra substrato e copertura e secondariamente alla conformazione geometrica con conseguenti fenomeni di focalizzazione sismica.

Tale zona si divide in quattro classi in base al litotipo predominante. La parte di terreno all'interno della Macroarea 34 Camporeggiano dove affiorano le alluvioni ricadono nella zona 7C "Fluvio lacustre limoso argilloso e Alluvioni limoso argillose"

30.7.1.2 Zone 8

La zona 8 evidenzia le aree con possibile amplificazione del moto sismico legate in primo luogo alla diversa impedenza sismica tra substrato e copertura e secondariamente alla conformazione geometrica con conseguenti fenomeni di focalizzazione sismica. I terreni di nuova classificazione all'interno della Macroarea 34 Camporeggiano dove è stat cartografato la copertura eluvio-colluviale ricadono nella zona 8 come zona pedemontana di falda di detrito.

30.7.1.3 Zone 9

La zona 9 riportata come linea, evidenzia la possibilità che nelle immediate vicinanze del contatto tra due materiali con caratteristiche fisico-meccaniche diverse possano verificarsi vibrazioni del terreno con ampiezze e frequenze diverse.

Tale zona è stata individuata al contatto con il substrato e i sedimenti eluvio-colluviali ed alluvionali della copertura.

30.7.2 Carta del rischio sismico: classi di amplificazione sismica locale

Tale carta è la carta di sintesi finale che tiene conto di tutti i risultati delle indagini effettuate nell'area, di quelle di riferimento ove ce ne fossero e della cartografia fin qui prodotta. Le classi di rischio relative ai terreni microzonati, sono indicate nell'elaborato E7 "Carta del rischio sismico" nelle seguenti tavole: Foglio 09 (15 III) e Foglio 14 (20 IV). Le varie aree vengono quindi divise in quattro classi di amplificazione sismica locale:

- Classe A amplificazione bassa o nulla
- Classe B amplificazione media
- Classe C amplificazione elevata
- Classe D amplificazione molto elevata

30.7.2.1 Classe A

Tutta l'area topograficamente più elevata rientra nella classe di amplificazione A bassa o nulla poiché presenta il substrato affiorante.

30.7.2.2 Classe B

A valle della s.s. 219 Pian d'Assino a partire dal contatto con il substrato e per uno, è stata individuata una fascia che rientra nella classe di amplificazione B media poiché presenta limi argillosi sopra il substrato con spessore inferiore a 10 m. Anche l'area denominata Bivio Sioli rientra in questa classe di amplificazione sismica.

30.7.3 Diagrafie indagini geognostiche

PERIGEO SONDAGGI

Via della Piaggiola, 152 06024 GUBBIO (PG)

- indagine :

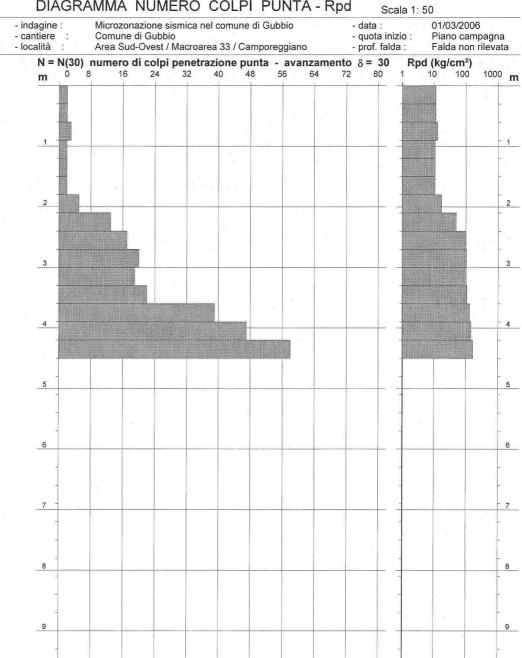
- cantiere - località : - note :

Riferimento: 107-05

n° PM33

	PROVA PENETROMETRICA DINAM TABELLE VALORI DI RESISTENZA	IICA	n° PM3
:	Microzonazione sismica nel comune di Gubbio Comune di Gubbio Area Sud-Ovest / Macroarea 33 / Camporeggiano	- data : - quota inizio : - prof. falda : - pagina :	01/03/2006 Piano campagna Falda non rilevata 1

Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof	.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta
0,00 -	0,30	2	15,5		1	2,40 -	2,70	17	104.9	-	3
0,30 -	0,60	2	15,5		1	2.70 -	3,00	20	123,4		3
0,60 -	0,90	3	20,6		2	3.00 -	3.30	19	117.2		3
0.90 -	1,20	2	13.7		2	3.30 -	3.60	22	135,7	n 6	3
1,20 -	1,50	2	13,7		2	3.60 -	3.90	39	218,5	1 2	4
1.50 -	1.80	2	13.7		2	3.90 -	4,20	47	263,3		4
1.80 -	2.10	5	34,3		2	4.20 -	4.50	58	324,9		4
2,10 -	2,40	13	80,2		3	10.6100000	100415055		energit Pet		50.5


Software by: Dr.D.MERLIN - 0425/840820

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 107-05

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° PM33

- PENETROMETRO DINAMICO tipo : TG 73-100/200

- M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - A (area punta)= $20,43 \text{ cm}^2$ - D(diam. punta)= 51,00 mm - Numero Colpi Punta N = N(30) [δ = 30 cm] - Uso rivestimento / fanghi iniezione : SI

Software by: Dr.D.MERLIN - 0425/840820

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 107-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PM33

- indagine : - cantiere : - località : - note :	Microzonazione sismica nel comune di Gubbio Comune di Gubbio Area Sud-Ovest / Macroarea 33 / Camporeggiano	- data : - quota inizio : - prof. falda : - pagina :	01/03/2006 Piano campagna Falda non rilevata 1
--	--	---	---

n°	Profor	idità (m)	PARAMETRO	RO ELABORAZIONE STATISTICA							VCA	β	Nspt
				М	min	Max	½(M+min)	s	M-s	M+s		181	
1	0,00	2,10	N Rpd	2,6 18,1	2 14	5 34	2,3 15,9	1,1 7,5	1,4 10,6	3,7 25,7	3 21	1,14	3
2	2,10	3,60	N Rpd	18,2 112,3	13 80	22 136	15,6 96,2				18 111	1,14	21
3	3,60	4,50	N Rpd	48,0 268,9	39 219	58 325	43,5 243,7				48 269	1,14	55

Nspt - PARAMETRI GEOTECNICI

n°	Prof.	(m)	LITOLOGIA	Nspt	N	IATUR	A GR	N/	IATURA COESIVA				
					DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е
1	0.00	2.10	Argilla limosa	3	11.3	27.2	214	1.86	1.38	0.19	1.78	44	1.194
2	2.10	3.60	Limo sabbioso con inclusi	21	51.5	33.3	353	2.00	1.60	1.31	2.03	24	0.648
3	3.60	4.50	Alterazione del bed-rock	55	86.9	41.8	615	2.16	1.87	3.44	2.44	07	0.177

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa \varnothing' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu (kg/cm²) = coesione non drenata

E' (kg/cm²) = modulo di deformazione drenato WW = contenuto d'acqua Ysat, Yd (t/m³) = peso di volume saturo e secco (rispettivamente) del terreno

Software by: Dr.D.MERLIN - 0425/840820

M: N: valore medio min: valore minimo Max: valore massimo numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) Nspt: numero colpi prova SPT (avanzamento δ = 30 cm) Nspt: numero colpi prova SPT (avanzamento δ = 30 cm) β:

Via della Piaggiola, 152 06024 GUBBIO (PG)

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

n° PM34

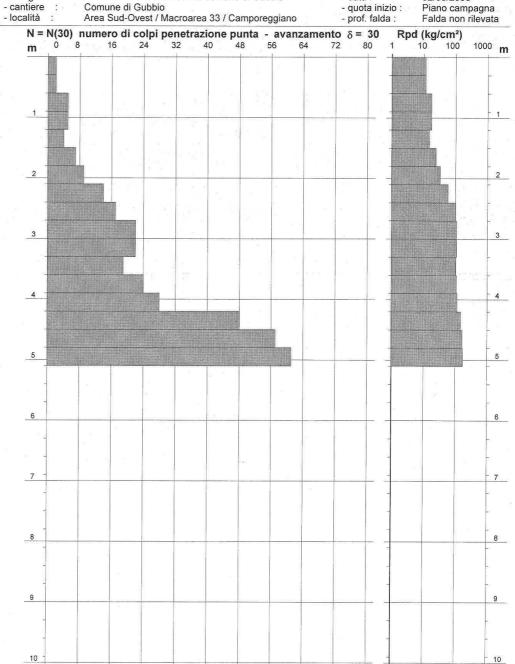
Riferimento: 107-05

- c - lo	ndagine antiere ocalità ote :	: Coi	crozonazione sisn mune di Gubbio a Sud-Ovest / Ma		10.00			a inizio: Pi falda: Fa	2/03/2006 ano campag alda non rilev	
Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.(m)	N(colpi p)	Rpd(kg/cm²) N(colpi r)	asta
0.00 -	0.30	2	15.5		1	2.70 - 3.00	22	135,7		3
0,30 -	0,60	2	15,5		1	3,00 - 3,30	22	135,7		3
0,60 -	0,90	5	34,3		2	3,30 - 3,60	19	117,2		3
0,90 -	1,20	5	34,3		2	3,60 - 3,90	24	134,4		4
,20 -	1,50	4	27,5		2	3,90 - 4,20	28	156,9		4
1,50 -	1,80	7	48,0	31. a	2	4,20 - 4,50	48	268.9		4
- 08,1	2,10	9	61,8	- 111	2	4,50 - 4,80	57	319,3		4
2,10 -	2,40	14	86,4		3	4,80 - 5,10	61	341,7		4
2,40 -	2,70	17	104,9	200	3					

Software by: Dr.D.MERLIN - 0425/840820

⁻ PENETROMETRO DINAMICO tipo : TG 73-100/200

⁻ M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - A (area punta)= 20,43 cm 2 - D(diam. punta)= 51,00 mm - Numero Colpi Punta N = N(30) [δ = 30 cm] - Uso rivestimento / fanghi iniezione : SI


Via della Piaggiola, 152 06024 GUBBIO (PG)

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° PM34

Riferimento: 107-05

Scala 1: 50 - indagine : Microzonazione sismica nel comune di Gubbio 02/03/2006 - data :

- PENETROMETRO DINAMICO tipo : TG 73-100/200

- M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - A (area punta)= 20,43 cm² - D(diam. punta)= 51,00 mm - Numero Colpi Punta N = N(30) [§ = 30 cm] - Uso rivestimento / fanghi iniezione : SI

Software by: Dr.D.MERLIN - 0425/840820

Via della Piaggiola, 152 06024 GUBBIO (PG)

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PM34

Microzonazione sismica nel comune di Gubbio - indagine :

 cantiere - località

Comune di Gubbio Area Sud-Ovest / Macroarea 33 / Camporeggiano

- data : - quota inizio:

02/03/2006 Piano campagna Falda non rilevata

Riferimento: 107-05

- prof. falda: - pagina :

n°	Profor	ndità (m)	PARAMETRO		ELABORAZIONE STATISTICA							β	Nspt
	70			M	min	Max	½(M+min)	s	M-s	M+s			
1	0,00	2,10	N Rpd	4,9 33,8	2 16	9 62	3,4 24,6	2,5 16,8	2,3 17,0	7,4 50,7	5 35	1,14	6
2	2,10	4,20	N Rpd	20,9 124,4	14 86	28 157	17,4 105,4	4,6 23,4	16,2 101,0	25,5 147,9	21 125	1,14	24
3	4,20	5,10	N Rpd	55,3 310,0	48 269	61 342	51,7 289,4				55 308	1,14	63

M: N: valore medio

- note :

min: valore minimo

Max: valore massimo

s: scarto quadratico medio

numero Colpi Punta prova penetrometrica dinamica (avanzamento β = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) Coefficiente correlazione con prova SPT (valore teorico β t = 1,14) Nspt: numero colpi prova SPT (avanzamento β = 30 cm) β:

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m) LITOLOGIA		Nspt	N	NATURA GRANULARE NATURA CO							SIVA	
			8		DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е
1	0.00	2.10	Limo argilloso deb.sabbioso	6	21.7	28.4	238	1.89	1.43	0.38	1.85	37	1.000
2	2.10	4.20	Sabbia limosa con inclusi	24	56.0	34.2	376	2.01	1.63	1.50	2.07	22	0.591
3	4.20	5.10	Alterazione del bed-rock	63	89.9	43.0	677	2.18	1.89	3.94	2.54	04	0.103

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa \emptyset' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu (kg/cm²) = coesione non drenata

E' (kg/cm²) = modulo di deformazione drenato W% = contenuto d'acqua Ysat, Yd (t/m³) = peso di volume saturo e secco (rispettivamente) del terreno

Software by: Dr.D.MERLIN - 0425/840820

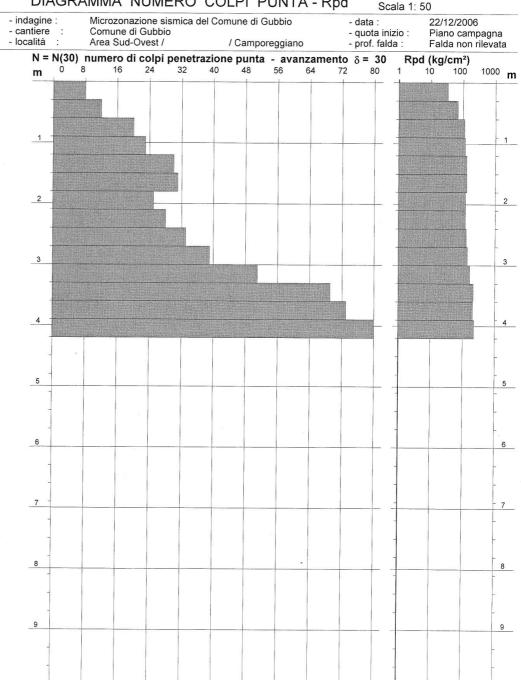
Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 107-05

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

n° PM45

indaginecantierelocalitànote :	: Co	crozonazione sisnomune di Gubbio ea Sud-Ovest / .	nica del Co		di Gubbio nporeggia			a inizio : Pi falda : Fa	22/12/2006 Piano campagna Falda non rilevata 1		
Prof.(m)	N(colpi p) Rpd(kg/cm²)	N(colpi r)	asta	Prof.	(m)	N(colpi p)	Rpd(kg/cm²) N(colpi r)	asta	
0,00 - 0,30	8	61,9		1	2,10 -	2,40	28	172,7		3	
0,30 - 0,60	12	92,8		1	2,40 -	2,70	33	203,6		3	
0,60 - 0,90	20	137,3		2	2,70 -	3,00	39	240,6		3	
0,90 - 1,20	23	157,8		2	3,00 -	3,30	51	314,6		3	
1,20 - 1,50	30	205,9		2	3,30 -	3,60	69	425,6		3	
1,50 - 1,80	31	212,7		2	3,60 -	3,90	73	408,9		4	
1,80 - 2,10	25	171,6		2	3.90 -	4.20	80	448.1		4	


⁻ PENETROMETRO DINAMICO tipo : TG 73-100/200 - M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - Numero Colpi Punta N = N(30) [δ = 30 cm] - A (area punta)= 20,43 cm² - D(diam. punta)= 51,00 mm - Uso rivestimento / fanghi iniezione : SI

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 107-05

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° PM45

- PENETROMETRO DINAMICO tipo : TG 73-100/200
- M (massa battente)= 73,00 kg H (altezza caduta)= 0,75 m A (area punta)= 20,43 cm² D(diam. punta)= 51,00 mm Numero Colpi Punta N = N(30) [δ = 30 cm] Uso rivestimento / fanghi iniezione : SI

10

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 107-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

- indagine :

- note :

Microzonazione sismica del Comune di Gubbio

- data :

n° PM45

- cantiere località

Comune di Gubbio Area Sud-Ovest /

/ Camporeggiano

- quota inizio : - prof. falda :

22/12/2006 Piano campagna Falda non rilevata

- pagina :

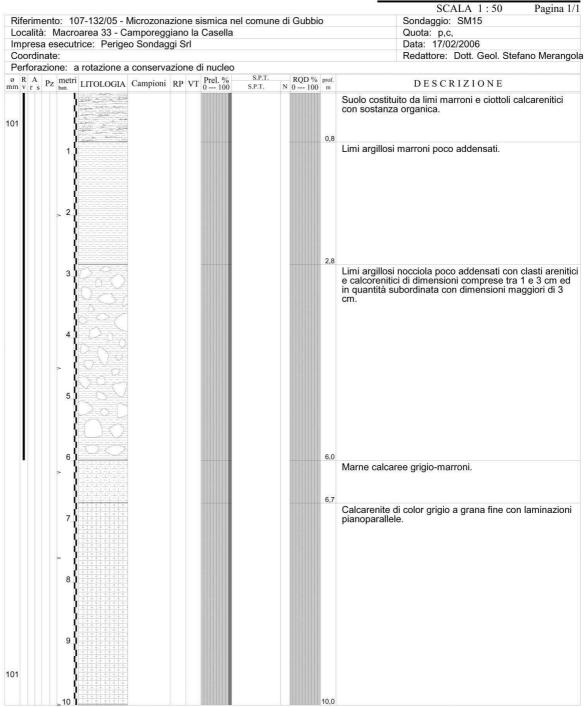
n°	Profon	idità (m)	PARAMETRO		ELABORAZIONE STATISTICA								Nspt
				М	min	Max	½(M+min)	s	M-s	M+s			
1	0,00	0,60	N Rpd	10,0 77,3	8 62	12 93	9,0 69,6				10 77	1,14	11
2	0,60	3,30	N Rpd	31,1 201,9	20 137	51 315	25,6 169,6	9,3 52,7	21,8 149,2	40,5 254,6	31 201	1,14	35
3	3,30	4,20	N Rpd	74,0 427,6	69 409	80 448	71,5 418,2				74 428	1,14	84

M: valore medio

valore medio min: valore minimo Max: valore massimo numero Colpi Punta prova penetrometrica dinamica (avanzamento $\delta = 30\,$ cm) Rpd: resistenza dinamica alla punta (kg/cm²) Nspt: numero colpi prova SPT (avanzamento $\delta = 30\,$ cm)

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m)	LITOLOGIA	Nspt	NATURA GRANULARE					NATURA COESIVA			
				DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е
1 2 3	0.00 0.60 0.60 3.30 3.30 4.20	Coltre agraria Limo Sabbioso con inclusi Alterazione del bed-rock	11 35 84	36.5 70.0 97.8	30.3 37.3 44.7	276 461 839	1.94 2.08 2.22	1.51 1.73 1.97	0.69 2.19 5.25	1.91 2.20 2.80	32 15 -02	0.867 0.415 -0.053


Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa ø' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu (kg/cm²) = coesione non drenata

E' (kg/cm²) = modulo di deformazione drenato W% = contenuto d'acqua Ysat, Yd (t/m³) = peso di volume saturo e secco (rispettivamente) del terreno

Software by: Dr.D.MERLIN - 0425/840820

STRATIGRAFIA - SM15

RAPPORTO TECNICO ED INTERPRETAZIONE DATI

Indagini sismiche PRG Gubbio

Nome del sito: RzM09

Indagini eseguite per: dott. geol. Stefano Merangola

Data acquisizione: febbraio 2006

Indagini eseguite: profilo verticale Vs (ReMi) e sezione Vp (rifrazione)

SOMMARIO		
Ubicazione indagini		pag. 2
Posizione dello stendimento		pag. 3
Parametri e ge	Parametri e geometria di acquisizione	pag. 3
Rifrazione Vp:	Rifrazione Vp: grafico delle dromocrone	pag. 4
Rifrazione Vp:	Rifrazione Vp: sezione sismica Vp	pag. 5
Refraction Micr	Refraction Microtremor. filtro p-f	pag. 6
Refraction Micr	Refraction Microtremor: curve di dispersione	pag. 6
Refraction Micr	Refraction Microtremor: profilo verticali Vs	pag. 7
Vs30 e categor	Vs30 e categoria del suolo di fondazione (DM 14 settembre 2005)	pag. 8
Modello sismostratigrafico		pag. 8

dott. geo

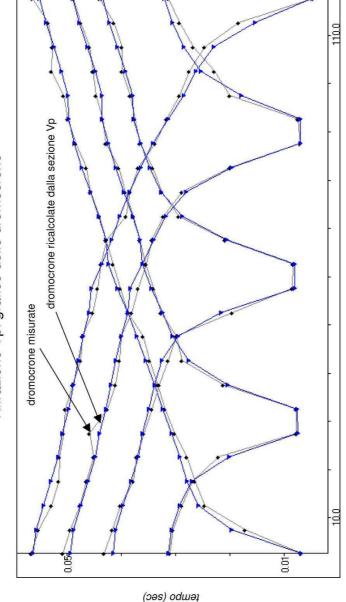
Milko Mattiacci

Città di Castello, febbraio 2006 Bombardiere

Via Grandi n.10, 06012 Città di Castello - Tel. e Fax 075 8522807 - C.F. 90012620549 - P.I. 02389710548 dott. geol. Luciano Giombini - dott. geol. Milko Mattiacci - dott. geol. Luca Bombardiere Studio Associato Ge.T.A.

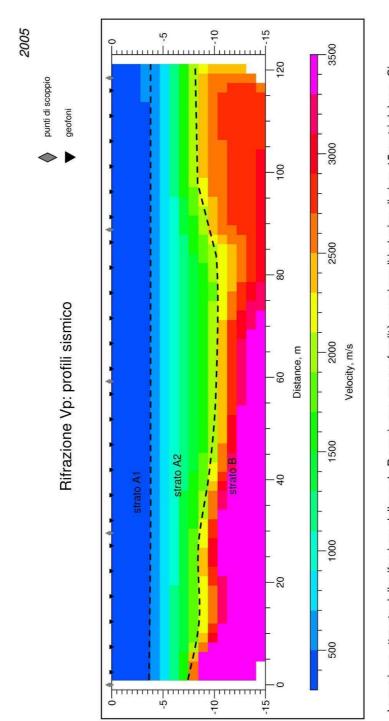
da CTR Umbria 300050 - 300060 (scala 1:10000)

2005


Ubicazione area di indagine area di indagine

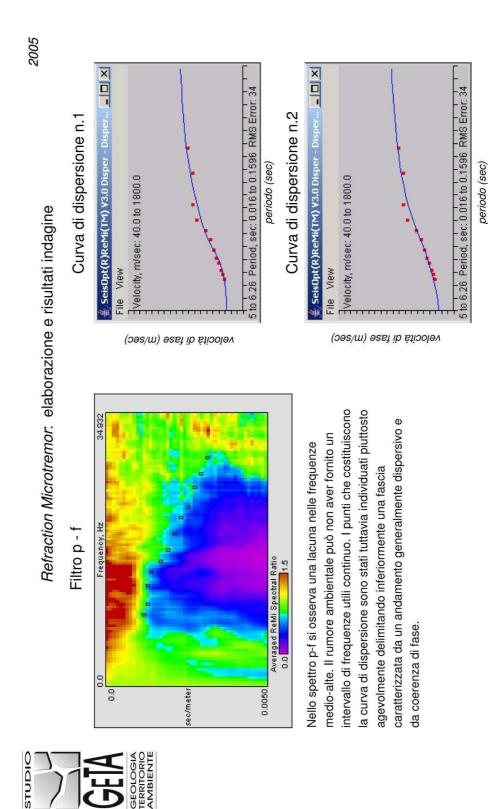
2005 Parametri e geometria di acquisizione ≈ 30 metri (profilo verticale) non necessaria non necessaria buffalo gun 117.5 metri ≈ 15 metri 27.5 metri 87.5 metri 57.5 metri -2.5 metri 5 metri 5 metri 115 m 115 m 24 intermedio: intermedio: end shot: end shot: centrale: Refraction Microtremor lunghezza stendimento: lunghezza stendimento: distanza intergeofonica: distanza intergeofonica: correzione topografica: correzione topografica: numero totale geofoni: numero totale geofoni: profondità di indagine: profondità di indagine: energizzazione: Rifrazione Vp posizione tiri: da CTR Umbria 300050 - 300060 (scala 1:2000) stendimento ReMi e rifrazione Vp proiezione profilo verticale ReMi Posizione stendimenti direzione delle distanze Le freccie indicano la progressive degli stendimenti. GEOLOGIA TERRITORIO AMBIENTE STUDIC

2005


Rifrazione Vp: grafico delle dromocrone

Il grafico delle dromocrone mostra delle anomalie significative riferibili alla presenza di variazioni laterali e dromocrone osservate e quelle ricalcolate dal modello mostrato nella pagina seguente. I segmenti distanti rifrattori con geometrie irregolari. Globalmente comunque si osserva una buona corrispondenza fra le delle dromocrone sono caratterizzati da velocità molto superiori a 1500 m/sec., suggerendo che la profondità di indagine non è stata limitata dall'eventuale presenza di falde superficiali.

distanza (m)

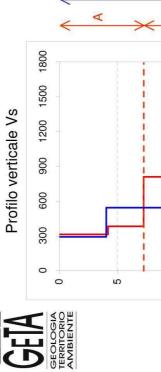


profondità (metri)

itoide. Gli intervalli A1ed A2 sono rispettivamente riferibili a litotipi mediamente addensati e/o consistenti e da mediamente a individua un intervallo superficiale (A1) caratterizzato da valori di Vp inferiori a 500 m/sec., un intervallo intermedio (A2) con -a sezione ottenuta dalla rifrazione delle onde P raggiunge una profondità massima di indagine di circa 15 metri dal p.c.. Si Vp crescenti da 500 a 2000 m/sec., ed un intervallo profondo con velocità superiori a 2300 m/sec. attribuibile al basamento profondità comprese fra 7.5 e 10.5 metri. Le variazioni di velocità all'interno dell'unità B sono interpretabili come differenze molto addensati e/o consistenti. Il contatto con il basamento litoide non è piano alla scala dell'indagine ed è posto a itologiche e/o di alterazione del materiale litoide.

GEOLOGIA TERRITORIO AMBIENTE

STUDIC



indicate con le linee blu. Gli errori quadratici medi rispetto alle curva di dispersione ricavata dall'analisi spettrale (punti rossi) sono Dai due modelli stratigrafici elaborati (mostrati nella pagina successiva) sono state ricavate le due curve di dispersione analitiche abbastanza contenuti.

2005

Refraction Microtremor. elaborazione e risultati indagine

STUDIC

10

15

20

25

ntervallo di profondità probabile per il tetto del basamento litoide. Si maniera tale da evidenziare il grado di approssimazione proprio del stratigrafiche di una porzione di sottosuolo molto ampia al di sotto prodotto le curve di dispersione analitiche che più approssimano metodo di indagine. In particolare si è cercato di evidenziare un profondità di circa 30 metri. I due modelli sono stati elaborati in quella ricavata dall'analisi spettrale. I profili hanno raggiunto la Nella figura sono riportati i due modelli stratigrafici che hanno sottolinea inoltre che i profili verticali mediano le geometrie dello stendimento di acquisizione. unità A è caratterizzata da Vs comprese fra 295 a 545 m/sec ed è pertanto riconducibile a depositi da mediamente a molto addensati e/o consistenti. Nel modello blu i valori di velocità aumentano sensibilmente in profondità.

m

B

L'unità B è caratterizzata da Vs comprese fra 810 e 1235 m/sec., ed è pertanto riconducibile alla presenza del basamento litoide e delle unità di transizione. La profondità risulta variabile fra 7 e 11.5 metri basamento aumenta notevolmente suggerendo un minor grado di secondo il modello considerato. In profondità la velocità del alterazione.

Vs30 = 705 m/s

 $Vs30 = 30 / \Sigma (h/v_i)$

30

Vs30 = 692 m/s

Vs30 e categoria del suolo di fondazione (DM 14/09/2005)

2005

Dal profilo verticale delle velocità delle onde trasversali si calcola un parametro Vs30 compreso fra 692 e 705 m/sec. Il profilo mette tuttavia in evidenza la presenza di una coltre mediamente consistente di spessore generalemente compreso fra 5 e 20 L'accelerazione massima al suolo è pari a: a, S, dove a, è l'accelerazione massima attesa per suoli di di categoria A (i.e. moltiplicativo S, che tiene conto dell'amplificazione locale stratigrafica, risulta dunque pari a 1.25 per suoli di categoria E. metri giacente su di un substrato rigido: pertanto il sito è ascrivibile alla **categoria di suolo di fondazione E**. Il fattore

Modello sismostratigrafico

basamento litoide e suoli assimilabili)

Il profilo verticale delle Vs entro la profondità investigata (i.e. 30 metri) individua due intervalli principali descritti di seguito con le profondità medie riferite a tutta la porzione di terreno investigata.

Unità B: intervallo profondo con Vs comprese fra 810 e 1235 m/sec. Queste velocità sono in accordo con il basamento litoide o con i litotipi di transizione. I modelli elaborati suggeriscono che il tetto è probabilmente posto a profondità comprese fra 7 e 11.5 metri. Si ritiene improbabile Unità A: intervallo superficiale con Vs compresa fra 295 e 545 m/sec riferibile a litotipi da mediamente a molto addensati e/o consistenti. che possa trovarsi a profondità minori. La sezione Vp ha raggiunto una profondità di indagine di circa 15 metri ed ha evidenziato alcune suddivisioni interne all'unità A. In particolare si All'interno del basamento si osservano alcune variazioni laterali significative di velocità interpretabili come differenze litologiche e/o nel grado di osservano due sotto-intervalli, denominati A1 e A2, caratterizzati da velocità medie crescenti. Il contatto con il basamento è posto a profondità comprese fra 7.5 e 10.5 metri (dunque in accordo con quanto osservato nell'indagine ReMi) ed appare irregolare alla scala dell'indagine. alterazione

Fenuto conto dei valori delle velocità delle onde S, si ritiene che il rischio di liquefazione, qualora siano presenti strati immersi in falda con componente granulare, sia trascurabile.

dott. geol. Luciano Giombini

dott. geol. Milko Mattiacci

dott. geol. Luca Bombardiere

30.7.4 Documentazione fotografica

Sondaggio: SM15

Cassetta catalogatrice 1/2

Cassetta catalogatrice 2/2

30.7.5 Cartografia

Si riportano di seguito gli allegati cartografici essenziali ai fini della valutazione del rischio sisimico.

Per una immediata comprensione degli stessi si è pensato di adottare il seguente ordine:

- legenda carta geologica;
- carta geologica su C.T.R. a scala 1:5.000;
- profili geologici e di suscettibilità sismica locale a scala 1:2.000;
- legenda carta geomorfologica;
- carta geomorfologica su C.T.R. a scala 1:5.000;
- legenda carta litotecnica;
- carta litotecnica su C.T.R. a scala 1:5.000;
- profili litotecnici a scala 1:2.000;
- legenda carta delle aree suscettibili di amplificazione sismica;
- carta delle aree suscettibili di amplificazione sismica su C.T.R. a scala 1:5.000

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA GEOLOGICA

DEPOSITI ELUVIALI E COLLUVIALI

ter

Eluvium, suoli, terre rosse ed in genere depositi essenzialmente fini provenienti dal disfacimento dei litotipi del substrato e con spessori minimi di 1.5 - 2 metri. Depositi detritici prodotti dal dilavamento *(colluvium)*, a granulometria prevalentemente fina o costituita da elementi di roccia a spigoli vivi, inglobati in una matrice prevalentemente limoso-argillosa.

Pleistocene-Olocene

an

ALLUVIONI ANTICHE

Le alluvioni non hanno più alcun rapporto con la dinamica dell'alveo attuale. Limi sabbiosi e limi argillosi con inglobati depositi lentiformi e nastrifomi di ghiaie e ghiaie sabbiose. Ghiaie sciolte o debolmente cementate, talora a stratificazione incrociata, con intercalazioni di lenti di sabbie bruno-giallastre e di argille grigie.

Sovrassegni e sigle per:

Ghiaie e ghiaie con sabbia - pallinato **gs**Sabbie e sabbie limose - puntinato **sl**Limi, limi argillosi e argille - tratteggiato **la**

COMPLESSO TERRIGENO UMBRO

FORMAZIONE MARNOSO ARENACEA

Alternanza di arenarie torbiditiche, marne e marne siltose con rapporto arenaria/pelite in genere minore di 1. Sono presenti megastrati, sia arenitici di provenienza alpina che calcarenitici, utilizzabili come strati guida.

Membro 2

(pelitico arenaceo inferiore con depositi da slumping)

Torbiditi pelitico arenacee quasi esclusivamente di provenienza alpina, in strati da sottili, a molto sottili (10-50 cm) con rapporto A/P in genere compreso tra 1/6 ed 1/10.

La parte arenacea degli strati è caratterizzata per lo più da lamine piano parallele che producono una marcata fissilità.

In genere nella porzione sommitale sono presenti depositi da slumping o olistostromi che mostrano tuttavia una notevole variabilità di spessore da luogo a luogo.

Serravalliano superiore

Traccia di sezione

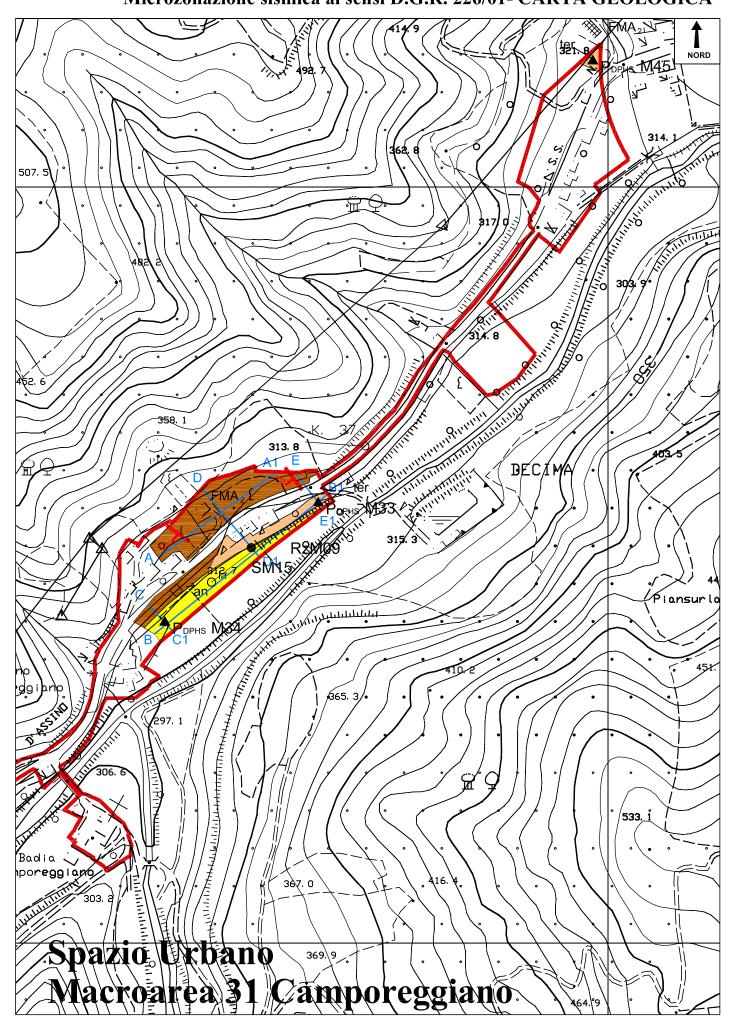
INDAGINI GEOGNOSTICHE

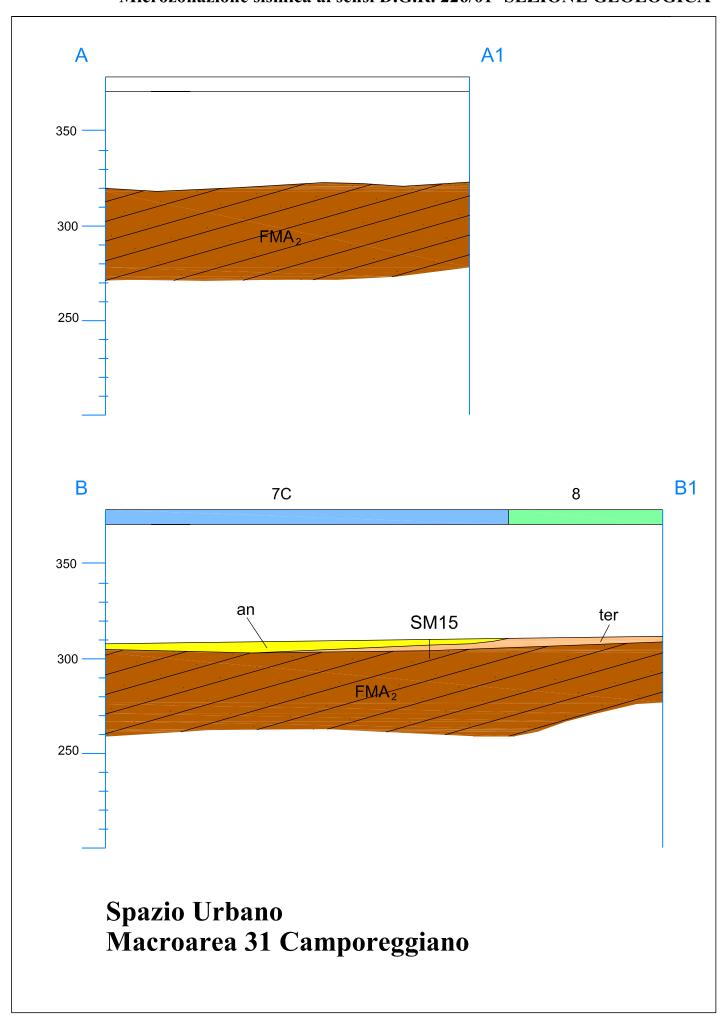
▲ PM26

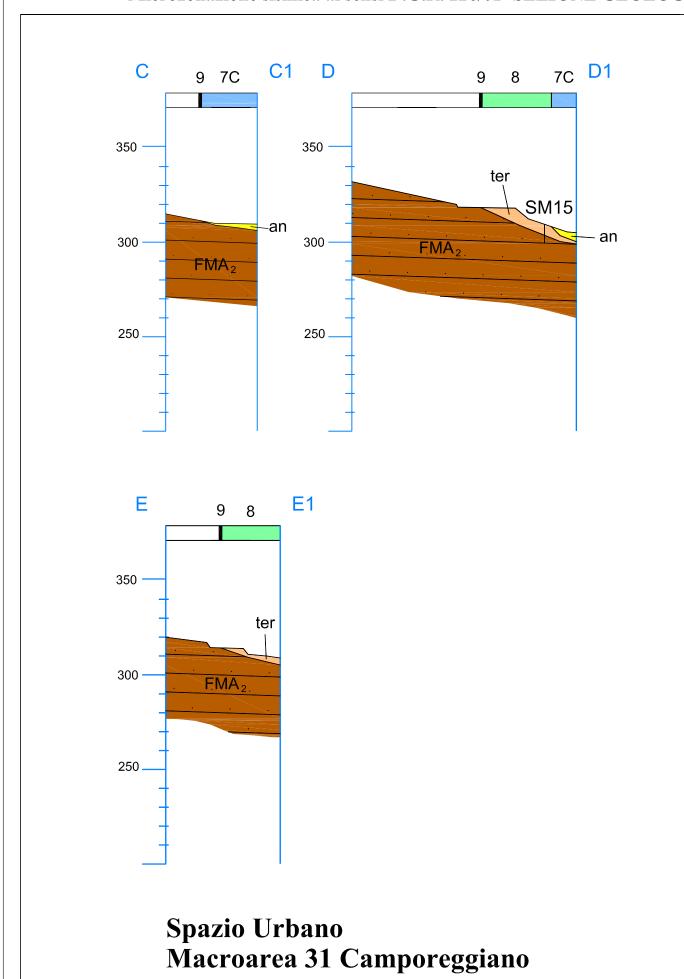
Prove penetrometriche dinamiche (DPHS)

Prove penetrometriche statiche (CPT)

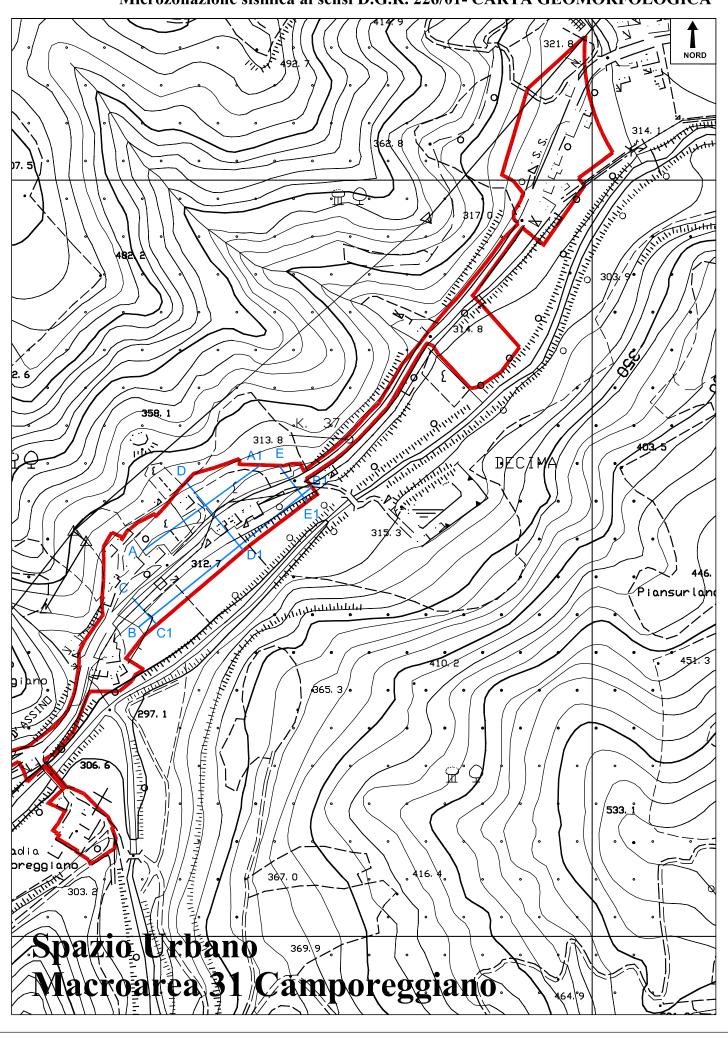
Sondaggi meccanici a conservazione di nucleo




Sismica a rifrazione


Macroaree urbane

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOLOGICA



Microzonazione sismica ai sensi D.G.R. 226/01- SEZIONE GEOLOGICA

Microzonazione si	smica ai sensi I	D.G.R. 226/01- LEGENDA CARTA GEOMORFOLOGICA
	A A1	Traccia di sezione
	01	Macroaree urbane

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOMORFOLOGICA

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA LITOTECNICA

SUBSTRATO

Materiale lapideo stratificato o costituito da alternanze di diversi litotipi:

L2B1 più litotipi stratificati (a predominanza di calcari, calcari marnosi o arenarie)

L2B2 più litotipi stratificati (senza predominanza di calcari e argille)

L2B3 più litotipi stratificati (a predominanza di argille)

COPERTURA E SUBSTRATO ALTERATO

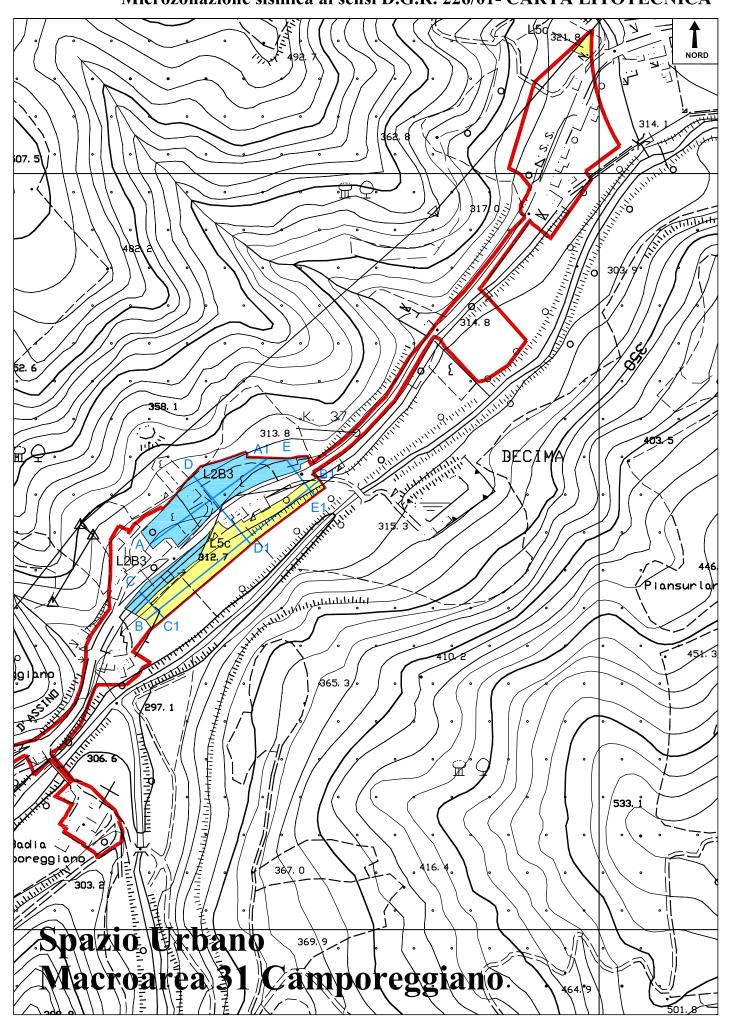
L5

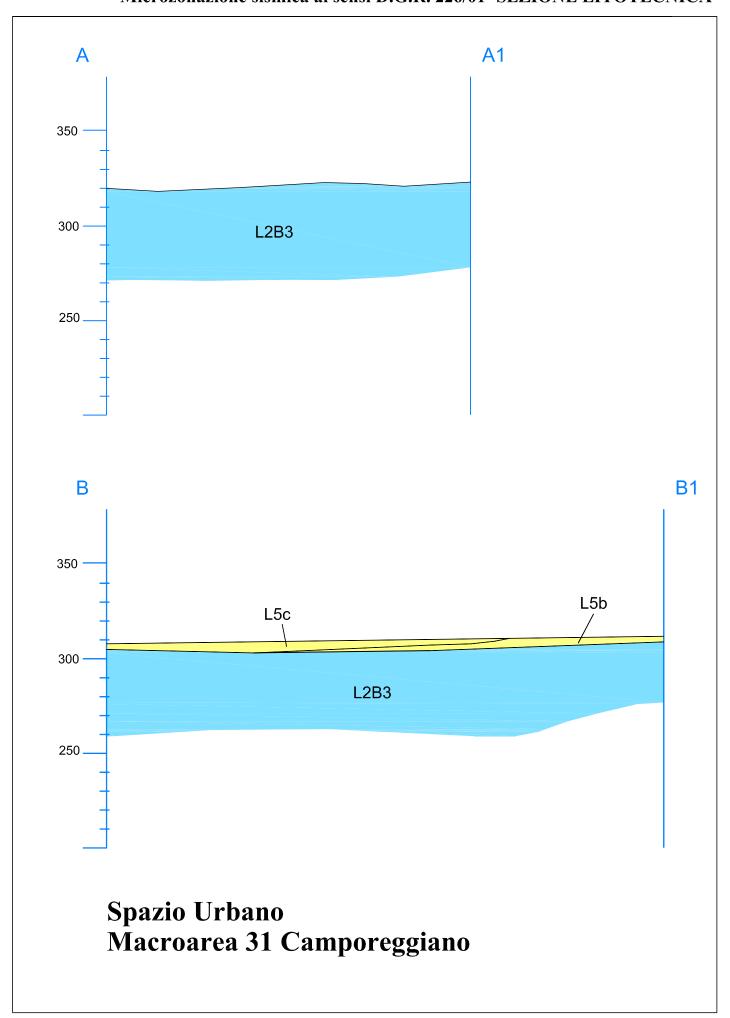
Materiali granulari sciolti o poco addensati:

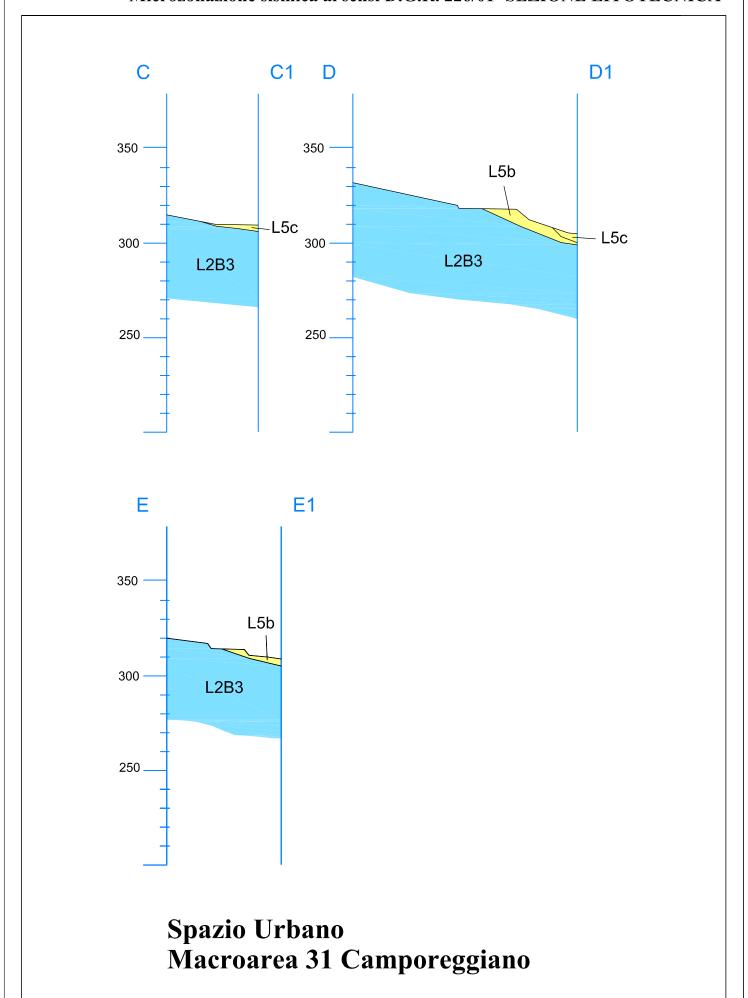
L5a - a prevalenza ciottolosa (pallinato gs)

L5b - a prevalenza sabbiosa (puntinato sl)

L5c - a prevalenza limo-argillosa/argillo-limosa (tratteggiato la)




Traccia di sezione


Macroaree urbane

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA LITOTECNICA

Microzonazione sismica ai sensi D.G.R. 226/01- SEZIONE LITOTECNICA

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA DELLE ZONE SUSCETTIBILI DI AMPLIFICAZIONE SISMICA O INSTABILITA' DINAMICHE LOCALI

TIPOLOGIA DELLE SITUAZIONI

RIFERIMENTO NELLE CARTE DI BASE

7

Zona di fondovalle

L5, L6

8

Zona pedemontana di falda di detrito e cono di deiezione

drr, dra, G7

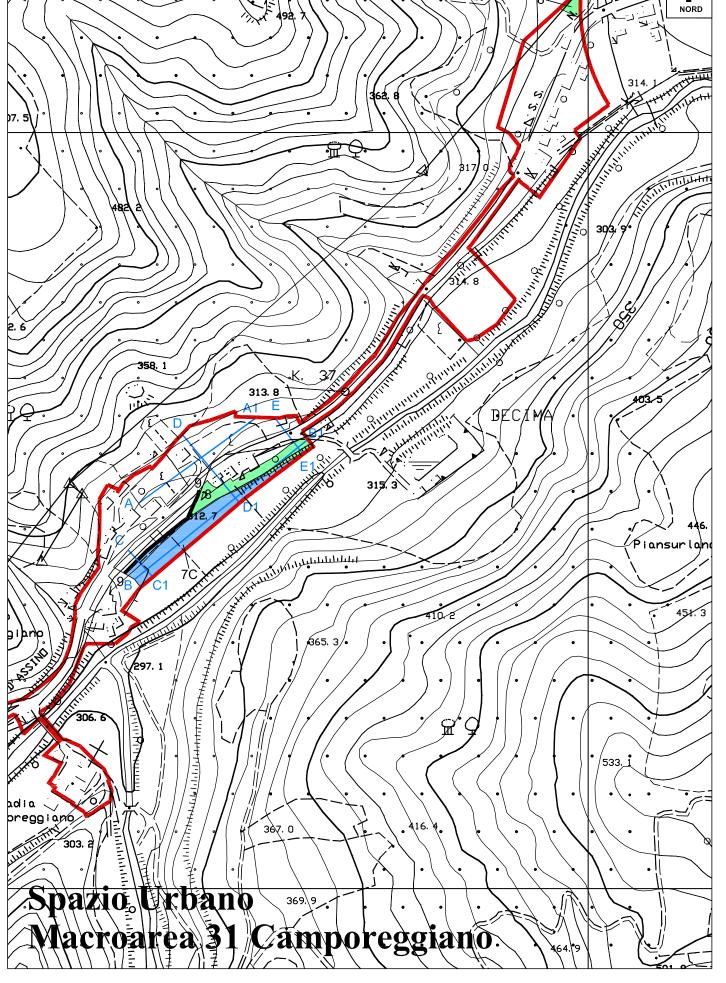
Zona di contatto tra litotipi con caratteristiche

fisico-meccaniche molto diverse

derivata da altre carte

Traccia di sezione

Macroaree urbane



Macroaree dei centri rurale

Macroaree degli ambiti monofunzionali

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA DELLE ZONE SUSCETTIBILI DI AMPLIFICAZIONE SISMICA O INSTABILITA' DINAMICHE LOCALI NORD Thirling the state of the state 313. 8 Piansurla Ŷ

31 RELAZIONE SPAZIO URBANO MACROAREA 32 MOCAIANA

(Dott. Geol. Arnaldo Ridolfi)

31.1 Caratteristiche geologiche

La macroarea in oggetto è ubicata a ridosso rispetto alla catena dei monti di Gubbio, costituita da una semibrachianticlinale orientata NW - SE, il cui fianco sud – ovest è stato ribassato da una serie di faglie dirette listriche che hanno originato il graben attualmente occupato dalla pianura eugubina.

La zona considerata è sita a valle dell'area dove passano queste faglie dirette, il cui rigetto complessivo si aggira intorno a 1.000 metri.

Queste dislocazioni sono il risultato di un campo di stress regionale distensivo, iniziato nel Pliocene, e probabilmente ancora attivo come dimostrano le microzonazioni sismiche effettuate a seguito degli ultimi eventi tellurici.

31.1.1 Geometria delle formazioni

I depositi relativi all'area studiata presentano principalmente un andamento lenticolare in superficie fino a diventare più regolari man mano che si scende in profondità.

31.1.2 Tipo di contatto, spessore e sua variabilità

Il contatto tra le formazioni è sempre di natura stratigrafica. Lo spessore delle formazioni varia da pochi metri fino a raggiungere la potenza di decine di metri.

31.2 Caratteristiche geomorfologiche

Dal punto di vista geomorfologico non si rilevano particolari fenomenologie. I terreni sono da considerarsi stabili dal punto di vista gravitativo. Non si rilevano nelle aree in oggetto fenomeni di movimento di terreno superficiale sia in atto che potenziali tantomeno fenomeni di cedimenti localizzati.

31.3 Schema idrogeologico generale e permeabilità relative dei terreni e delle rocce

I terreni presenti possono essere considerati abbastanza permeabili e le acque meteoriche vengono direttamente assorbite nel terreno. L'idrografia superficiale è rappresentata dal T. Assino.

La falda idrica sottostante si trova ad una profondità compresa tra i 10 metri e i 40 metri ca. Gli acquiferi sono costituiti dai terreni ghiaiosi e ghiaioso sabbiosi permeabili per porosità. L'accumulo delle acque è garantito dalla presenza del complesso alluvionale argilloso e argilloso limoso. L'area di ricarica degli acquiferi è situata nella parte pedemontana e avviene per infiltrazione diretta o ricarica laterale operata dalle formazioni calcaree presenti a monte. La discarica avviene verso Sud, sia attraverso il collettore principale rappresentato dal torrente Assino, sia artificialmente, ad opera dell'azione antropica, mediante l'emungimento di pozzi presenti a valle.

31.4 Caratteristiche litotecniche

La macroarea in oggetto è costituita da alluvioni ghiaiose e ghiaioso sabbiose e alluvioni limoso argillose.

Dal punto di vista litotecnico si assiste quindi ad una variabilità granulometrica che va dalle ghiaie fino ai limi argillosi e le argille vere e proprie.

In tutta la macroarea non affiora il substrato roccioso.

31.4.1 Unità litotecniche della copertura

Le unità litotecniche fanno riferimento alla classe L5 e nello specifico L5a per i terreni a prevalenza ciottolosa e L5c per i terreni prevalentemente argilloso limosi.

31.5 Indagini geognostiche di riferimento

Le indagini geognostiche di riferimento riguardano n.1 sondaggi a distruzione di nucleo, indicato in carta geologica con la sigla SAr1, e n.2 indagini penetrometriche indicate con PAr4 e PAr5.

31.6 Indagini geognostiche eseguite

Per quanto riguarda le indagini eseguite si elenca il numero e le tipologie di prove effettuate:

- <u>n. 10 indagini penetrometriche fino a 10 m di profondità</u> e precisamente da PA5 a PA14;
- <u>n.3 sondaggi a rotazione a conservazione di nucleo fino a 30 m di profondità</u> e precisamente SA8 (con prelievo di campione), SA9 e SA10;
- <u>n.1 indagini sismiche ReMi (Rm) con stendimenti di ca. 100 m</u> e precisamente RmA5.

31.7 Cartografia di sintesi

31.7.1 Carta delle zone suscettibili di amplificazione o instabilità dinamiche locali L'area in oggetto è da classificarsi come zona di fondovalle.

31.7.1.1 Zone 7

Anche se in profondità si rileva un sostanziale incremento dei terreni limoso argillosi, nell'ambito dei primi 30 metri si ha la prevalenza di alluvioni sabbioso ghiaiose. L'area si può quindi classificare come Zona 7D.

31.7.2 Carta del rischio sismico: classi di amplificazione sismica locale

In tutta la macroarea siamo in presenza di terreni alluvionali aventi una potenza maggiore ai 30 m.

Per la classificazione dei terreni caratterizzati da successioni stratigrafiche con spessori non contemplati nella tabella 2 del D.G.R. N° 226 del 14 marzo 2001 e s.m.i., in accordo con gli uffici provinciali, è stata presa visione degli studi recentemente realizzati dall'Istituto Nazionale di Geofisica e Vulcanologia nella pianura di Gubbio. Sulla base dei dati a disposizione per questi terreni si assume un'amplificazione sismica locale elevata (Classe C).

Le classi di rischio relative ai terreni microzonati sono indicate nell'elaborato Es.7 "Carta del rischio sismico" nelle seguenti tavole: Foglio 03 (11 III).

31.7.3 Diagrafie indagini geognostiche

TABELLE GEOTECNICHE

UNITA' LITOSTRATIGRAFICA: Alluvioni ghiaioso sabbiose prevalenti (prova di riferimento SAr1)

Tabella parametri fisici

•	γ (KN/mc)	W (%)	Sr (%)	е	Dr (%)	LL (%)	IP	D10	U
N.									
v.medio									
dev.std									
min									
max									

Tabella parametri fisici

	OCR	C'p	Ф'р	C'r	Ф'r	С	Ф	Cu
N.								
v.medio								
dev.std								
min								
max								

N.: numero di valori
 OCR: grado di sovraconsolidazione
 C'p: coesione efficace di picco (KPa)
 C'r: coesione efficace di picco (°)
 C'r: coesione efficace residua (KPa)
 C'r: angolo di attrito efficace residuo (°)
 C: coesione in termini di tensioni totali (KPa)
 Y: peso di volume naturale
 Sr: grado di saturazione
 e: indice dei vuoti
 Dr: densità relativa
 LL: limite di liquidità
 IP: indice di plasticità

Φ: angolo di attrito in termini di tensioni totali (°)

D10: diametro efficace (passante al 10%)

Cu: coesione non drenata (KPa)

U: coef. di uniformità(rapporto tra i passanti al 60 e al 10%)

Tabella prove in sito

			CPT-qc	CPT-fs	SCPT				
			dev.st						
Profondità	N.	v.medio	d.	min	max	v.medio	v.medio	v.medio	
0-2									
etc.									
N.: numero di p	rove SPT	o ad esse co	rrelate						
SPT: numero d	licolpi per l	colpi per l'avanzamento dei successivi 30 cm dopo i primi 15 cm							
qc: resistenza a	alla punta	(Kpa)							
fs: attrito latera	le (Kpa)								

Tabella prove in sito

Tabolia prove in olic					
	Spessore medio				
LITOTIPO	(m)	Località	Vp	Vs	Tipologia prova
					Sondaggio a rotazione e a
		Mocaiana			distruzione di nucleo (Sar1)
Limi argillosi	0.0 - 1.5				
Sabbia e ghiaia	1,5 - 30,0				
Argilla prevalente	30,0 - 45,0				

TABELLE GEOTECNICHE

UNITA' LITOSTRATIGRAFICA: Alluvioni sabbiose (prova di riferimento PAr4)

Tabella parametri fisici

	γ (KN/mc)	W (%)	Sr (%)	е	Dr (%)	LL (%)	ΙP	D10	U
N.									
v.medio									
dev.std									
min									
max									

Tabella parametri fisici

	OCR	C'p	Ф'р	C'r	Ф'r	С	Ф	Cu
N.								
v.medio								
dev.std								
min								
max								

N.: numero di valoriOCR: grado di sovraconsolidazioneγ: peso di volume naturalew: contenuto in acqua naturale

C'p: coesione efficace di picco (KPa)

O'p: angolo di attrito efficace di picco (°)

C'r: coesione efficace residua (KPa)

Or: densità relativa

Or: angolo di attrito efficace residuo (°)

LL: limite di liquidità

C: coesione in termini di tensioni totali (KPa)

IP: indice di plasticità

Φ: angolo di attrito in termini di tensioni totali (°)

Cu: coesione non drenata (KPa)

D10: diametro efficace (passante al 10%)

U: coef. di uniformità(rapporto tra i passanti al 60 e al 10%)

Tabella prove in sito

			SPT			CPT-qc	CPT-fs	SCPT
Profondità	N.	v.medio	dev.std.	min	max	v.medio	v.medio	v.medio
0,0-1,5	4,00							
1,5-3,2	5,00							
3,2-5,0	14,00							
N.: numero di p	rove SPT	o ad esse	correlate					
SPT: numero d	licolpi per l	l'avanzame	ento dei su	ccessivi 30	cm dopo	i primi 15	cm	
qc: resistenza a	alla punta	(Kpa)						
fs: attrito latera	le (Kpa)							

Tabella prove in sito

LITOTIPO	Spessore medio	Località	Vp	Vs	Tipologia prova

TABELLE GEOTECNICHE

UNITA' LITOSTRATIGRAFICA: Alluvioni sabbiose (prova di riferimento PAr5)

Tabella parametri fisici

	γ (KN/mc)	W (%)	Sr (%)	е	Dr (%)	LL (%)	ΙP	D10	U
N.									
v.medio									
dev.std									
min									
max									

Tabella parametri fisici

	OCR	C'p	Ф'р	C'r	Ф'r	С	Ф	Cu
N.								
v.medio								
dev.std								
min								
max								

N.: numero di valori
 OCR: grado di sovraconsolidazione
 C'p: coesione efficace di picco (KPa)
 Φ'p: angolo di attrito efficace di picco (°)
 γ: peso di volume naturale
 w: contenuto in acqua naturale
 Sr: grado di saturazione
 e: indice dei vuoti

C'r: coesione efficace residua (KPa)

Dr: densità relativa

Dr: densità relativa

LL: limite di liquidità

C: coesione in termini di tensioni totali (KPa)

IP: indice di plasticità

Φ: angolo di attrito in termini di tensioni totali (°) D10: diametro efficace (passante al 10%)

Cu: coesione non drenata (KPa)

U: coef. di uniformità(rapporto tra i passanti al 60 e al 10%)

Tabella prove in sito

			SPT			CPT-qc	CPT-fs	SCPT
Profondità	N.	v.medio	dev.std.	min	max	v.medio	v.medio	v.medio
0,0-1,5	4,50							
1,5-3,2	4,00							
3,2-5,0	16,00							
N.: numero di p	prove SPT	o ad esse	correlate					
SPT: numero d	licolpi per l	l'avanzame	ento dei su	ccessivi 30	cm dopo	i primi 15 d	cm	
qc: resistenza	alla punta	(Kpa)						
fs: attrito latera	le (Kpa)							

Tabella prove in sito

LITOTIPO	Spessore medio	Località	Vp	Vs	Tipologia prova

Prove penetrometriche a cura del Dott. Geol. Arnaldo Ridolfi

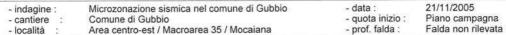
PERIGEO SONDAGGI

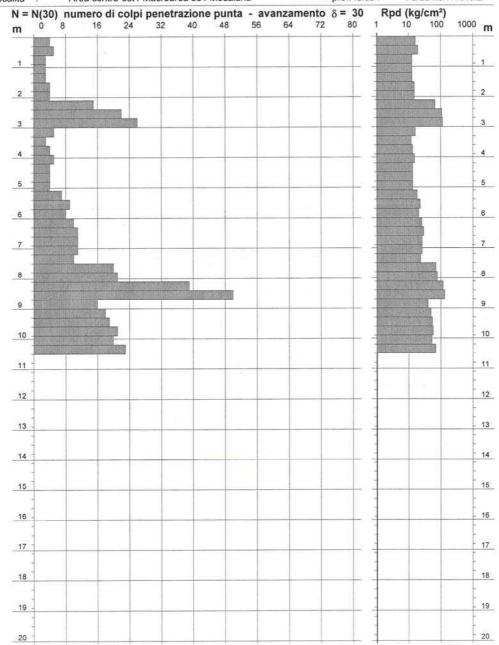
Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

			VA PENE				MICA		n° F	PA5	
- indagine : Microzonazione sismica nel comune di Gubbio - cantiere : Comune di Gubbio - località : Area centro-est / Macroarea 35 / Mocaiana - note :								a inizio : P falda : F	21/11/2005 Piano campagna Falda non rilevata 1		
Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.(m)	N(colpi p)	Rpd(kg/cm	²) N(colpi r)	asta	
0.00 -	0.30	4	30.9		-1	5.40 - 5.70	9	46,2		5	
0.30 -	0,60		38,7		1	5.70 - 6.00	8	41,0		5	
0,60 -	0.90	3	20,6	200	2	6,00 - 6,30	10	51,3		5	
0.90 -	1,20	5 3 3 3	20,6		2	6,30 - 6,60	11	56,4		5 5	
1,20 -	1,50	3	20,6		2	6,60 - 6,90	11	52,1		6	
1,50 -	1,80	4	27,5		2	6,90 - 7,20	11	52,1		6	
1,80 -	2,10	4	27,5		2	7,20 - 7,50	10	47,3		6	
2,10 -	2.40	15	92,5		3	7,50 - 7,80	20	94,6	-	6	
2,40 -	2,70	22	135,7		3	7,80 - 8,10	21	99,4		6	
2.70 -	3,00	26	160,4		3	8,10 - 8,40	39	171,3		7	
3,00 -	3,30	5	30,8		3	8,40 - 8,70	50	219,6		7	
3,30 -	3,60	5 3 4	18,5	****	3	8,70 - 9,00	16	70,3		7	
3,60 -	3,90	4	22,4		4	9,00 - 9,30	18	79,0		7	
3.90 -	4,20	5	28,0		4	9,30 - 9,60	19	83,4		7	
4,20 -	4,50	5	22,4		4	9,60 - 9,90	21	86,0		8	
4,50 -	4,80	4	22,4		4	9,90 - 10,20	20	81,9		8	
4,80 -	5,10	4	22,4		4	10,20 - 10,50	23	94,2		8	
5,10 -	5,40	7	35,9	****	5						

⁻ PENETROMETRO DINAMICO tipo : TG 73-100/200 - M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - Numero Colpi Punta N = N(30) [δ = 30 cm] - A (area punta)= 20,43 cm² - D(diam. punta)= 51,00 mm - Uso rivestimento / fanghi iniezione : SI


Via della Piaggiola, 152 06024 GUBBIO (PG)


Riferimento: 105-05

Scala 1: 100

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° PA5

- PENETROMETRO DINAMICO tipo: TG 73-100/200

- M (massa battente)= 73,00 kg $\,$ - H (altezza caduta)= 0,75 m $\,$ - A (area punta)= 20,43 cm 2 - D(diam. punta)= 51,00 mm $\,$ - Uso rivestimento / fanghi iniezione $\,$: SI

Software by: Dr.D.MERLIN - 0425/840820

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PA5

- data : - quota inizio : - prof. falda :	21/11/2005 Piano campagna Falda non rilevata
	- quota inizio :

n°	Profon	dità (m)	PARAMETRO		ELA	BORA	ZIONE STA	ATIST	ICA		VCA	β	Nspt
				М	min	Max	½(M+min)	s	M-s	M+s			
1	0,00	2,10	N Rpd	3,7 26,6	3 21	5 39	3,4 23,6	6,8	3,0 19,8	4,5 33,4	4 29	1,14	5
2	2,10	3,00	N Rpd	21,0 129,5	15 93	26 160	18,0 111,0				21 130	1,14	24
3	3,00	6,00	N Rpd	5,3 29,0	3 19	9 46	4,2 23,8	2,0 9,3	3,3 19,7	7,3 38,3	5 27	1,14	6
4	6,00	7,50	N Rpd	10,6 51,8	10 47	11 56	10,3 49,6	_			11 54	1,14	13
5	7,50	8,70	N Rpd	32,5 146,2	20 95	50 220	26,3 120,4				32 144	1,14	37
6	8,70	10,50	N Rpd	19,5 82,5	16 70	23 94	17,8 76,4	2,4 7,9	17,1 74,6	21,9 90,4	20 85	1,14	23

Nspt - PARAMETRI GEOTECNICI

n°	Prof.	(m)	LITOLOGIA	Nspt	pt NATURA GRANULARE NATURA COESIN								SIVA
					DR	DR ø'	E'	Ysat	Yd	Cu	Ysat	W	е
1	0.00	2.10	Argilla Limosa	5	18.3	28.0	230	1.88	1.41	0.31	1.83	39	1.061
2	2.10	3.00	Ciottoli e Sabbia medio grossa	24	56.0	34.2	376	2.01	1.63	1.50	2.07	22	0.591
3	3.00	6.00	Argilla Limosa	6	21.7	28.4	238	1.89	1.43	0.38	1.85	37	1.000
4	6.00	7.50	Limo Sabbioso	13	39.5	30.9	292	1.95	1.53	0.81	1.93	30	0.818
5	7.50	8.70	Ghiaia media e Sabbia fine	37	72.0	37.8	477	2.09	1.74	2.31	2.23	14	0.387
6	8.70	10.50	Sabbia con ciottoli	23	54.5	33.9	369	2.01	1.62	1.44	2.06	23	0.610

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa \varnothing' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu (kg/cm²) = coesione non drenata

E' (kg/cm²) = modulo di deformazione drenato W% = contenuto d'acqua Ysat, Yd (t/m²) = peso di volume saturo e secco (rispettivamente) del terreno

M: valore medio min: valore minimo Max: valore massimo numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) Spt. Coefficiente correlazione con prova SPT (valore teorico β t = 1,14) Nspt: numero colpi prova SPT (avanzamento δ = 30 cm)

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

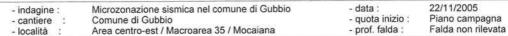
PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

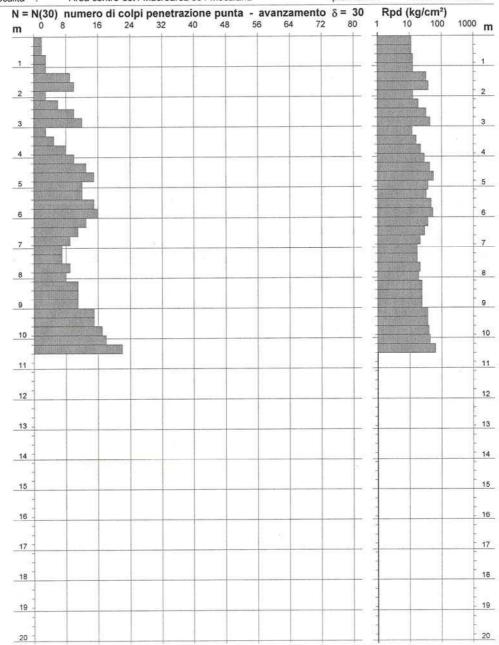
n° PA6

- c - lo	- indagine : Microzonazione sismica nel comune di Gubbio Comune di Gubbio Comune di Gubbio Area centro-est / Macroarea 35 / Mocaiana note :						- quota inizio : Piano		/11/2005 ano campag Ida non rilev	
Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.(m)	N(colpi p)	Rpd(kg/cm²) N(colpi r)	asta
0.00 -	0.30	2	15,5		1	5.40 - 5.70	15	77,0		5
0,30 -	0.60	2 2 3 3 9	15,5	1,777	1	5.70 - 6.00	16	82,1		5
0.60 -	0.90	3	20,6		2	6,00 - 6,30	13	66,7		5
0.90 -	1,20	3	20,6	-	2	6.30 - 6.60	11	56,4		5
1.20 -	1,50	9	61.8	2777	2	6,60 - 6,90		42,6	***	6
1,50 -	1,80	10	68.6		2	6,90 - 7,20	9 7	33,1	***	6 6
1.80 -	2,10	3	20,6		2	7.20 - 7.50	7	33,1		
2,10 -	2,40	6	37.0		3	7,50 - 7,80	9	42,6		6
2.40 -	2,70	10	61,7		3	7.80 - 8.10	8	37,9		6
2.70 -	3.00	12	74,0		3	8.10 - 8.40	11	48,3	2	7
3,00 -	3,30	12 3 5	18,5		3	8,40 - 8,70	11	48,3		7
3,30 -	3,60	5	30,8	THESE.	3	8,70 - 9,00	11	48,3		7
3,60 -	3,90	8	44,8		4	9.00 - 9.30	15	65,9		7
3,90 -	4,20	10	56.0		4	9,30 - 9,60	15	65,9		7
4.20 -	4.50	13	72.8		4	9,60 - 9,90	17	69,6	F-1000	8
4,50 -	4.80	15	84,0		4	9.90 - 10,20	18	73,7		8
4.80 -	5,10	12	67,2	energy.	4	10,20 - 10,50	22	90,1	The Later	8
5,10 -	5,40	12	61,6		5	atentenna tentenna				

Software by: Dr.D.MERLIN - 0425/840820

⁻ PENETROMETRO DINAMICO tipo : TG 73-100/200 - M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - Numero Colpi Punta N = N(30) [δ = 30 cm] - A (area punta)= 20,43 cm² - D(diam. punta)= 51,00 mm - Uso rivestimento / fanghi iniezione : SI


Via della Piaggiola, 152 06024 GUBBIO (PG)


Riferimento: 105-05

Scala 1: 100

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° PA6

- PENETROMETRO DINAMICO tipo : TG 73-100/200

- M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - A (area punta)= $20,43 \text{ cm}^2$ - D(diam. punta)= 51,00 mm - Numero Colpi Punta N = N(30) [δ = 30 cm] - Uso rivestimento / fanghi iniezione : SI

Software by: Dr.D.MERLIN - 0425/840820

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PA6

- indagine :	Microzonazione sismica nel comune di Gubbio	- data :	22/11/2005
- cantiere :	Comune di Gubbio	- quota inizio :	Piano campagna
- località :	Area centro-est / Macroarea 35 / Mocaiana	- prof. falda :	Falda non rilevata

n°	Profondità (m)	PARAMETRO	ELABORAZIONE STATISTICA						VCA β		Nspt	
			М	min	Max	1/2(M+min)	s	M-s	M+s			
1	0,00 3,90	N Rpd	5,8 37,7	2 16	12 74	3,9 26,6	3,5 21,9	2,3 15,8	9,4 59,6	6 39	1,14	7
2	3,90 10,50	N Rpd	12,6 60,1	7 33	22 90	9,8 46,6	3,8 16,7	8,8 43,5	16,4 76,8	13 62	1,14	15

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m)	LITOLOGIA	Nspt	NATURA GRANULARE					NATURA COESIVA			
				DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е
1 2	0.00 3.90 3.90 10.50	Limo sabbioso con liv. ghiaiosi Sabbia limosa con inclusi		25.0 42.5	28.8 31.5	245 307	1.90 1.96	1.45 1.54	0.44 0.94	1.86 1.96	36 29	0.972 0.773

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa $\phi'(\circ)$ = angolo di attrito efficace $e(\cdot)$ = indice dei vuoti $e'(\circ)$ = coesione non drenata $e'(\circ)$ = peso di volume saturo e secco (rispettivamente) del terreno

M: valore medio min: valore minimo Max: valore massimo N: numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) Nspt: numero colpi prova SPT (avanzamento δ = 30 cm) Nspt: numero colpi prova SPT (avanzamento δ = 30 cm)

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

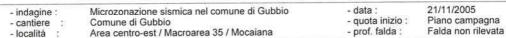
PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

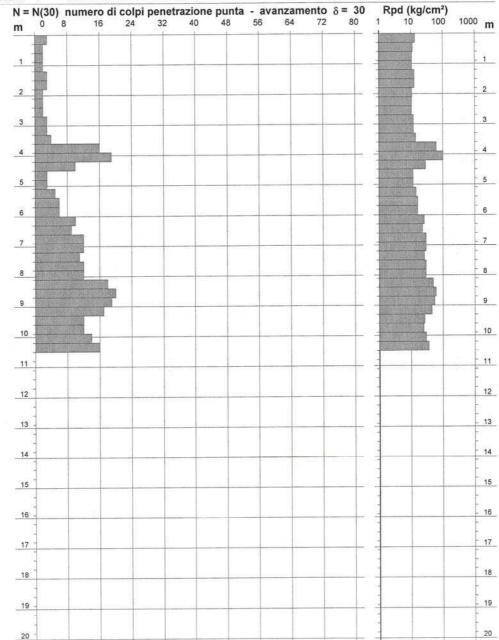
n° PA7

- c	- indagine : - cantiere : - località : - note :		rozonazione sism nune di Gubbio a centro-est / Ma					a inizio : Pi falda : Fa	21/11/2005 Piano campagna Falda non rilevata 1		
Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.(m)	N(colpi p)	Rpd(kg/cm) N(colpi r)	ast	
0.00 -	0.30	3	23,2		1	5,40 - 5,70	6	30,8		5	
0.30 -	0,60	2	15,5		1	5,70 - 6,00	6	30,8		5	
0.60 -	0.90	2 2	13,7		2	6,00 - 6,30	10	51,3		5 5 5 5	
0.90 -	1.20	2	13,7		2	6,30 - 6,60	9	46,2			
1,20 -	1,50	3	20,6		2	6,60 - 6,90	12	56,8		6	
1,50 -	1,80	3	20,6		2	6,90 - 7,20	12	56,8		6	
1,80 -	2,10	2 3 3 2 2	13,7		2	7,20 - 7,50	11	52,1		6666	
2.10 -	2.40	2	12,3		3	7,50 - 7,80	12	56,8		6	
2,40 -	2.70	2	12,3		3	7,80 - 8,10	12	56,8	11777772	6	
2.70 -	3,00	2 3 3	18,5	****	3	8,10 - 8,40	18	79,0		7	
3.00 -	3,30	3	18,5	****	3	8,40 - 8,70	20	87,8		7	
3,30 -	3,60	4	24,7	****	3	8,70 - 9,00	19	83,4		7	
3,60 -	3,90	16	89,6		4	9,00 - 9,30	17	74,7		7	
3,90 -	4.20	19	106,4		4	9,30 - 9,60	12	52,7		7	
4.20 -	4,50	10	56,0		4	9,60 - 9,90	12	49,2		8	
4.50 -	4.80		16,8	****	4	9,90 - 10,20	14	57,3		8	
4.80 -	5,10	3 3 5	16,8		4	10,20 - 10,50	16	65,5		8	
5,10 -	5,40	5	25,7	****	5						

Software by: Dr.D.MERLIN - 0425/840820

⁻ PENETROMETRO DINAMICO tipo : TG 73-100/200 - M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - Numero Colpi Punta N = N(30) [δ = 30 cm] - A (area punta)= 20,43 cm² - D(diam. punta)= 51,00 mm - Uso rivestimento / fanghi iniezione : SI


Via della Piaggiola, 152 06024 GUBBIO (PG)


Riferimento: 105-05

Scala 1: 100

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° PA7

- PENETROMETRO DINAMICO tipo : TG 73-100/200

- M (massa battente)= 73,00 kg $\,$ - H (altezza caduta)= 0,75 m $\,$ - A (area punta)= 20,43 cm 2 $\,$ - D(diam. punta)= 51,00 mm $\,$ - Numero Colpi Punta $\,$ N = N(30) $\,$ [$\,$ $\,$ 8 $\,$ 30 cm] $\,$ - Uso rivestimento / fanghi iniezione $\,$: SI

Software by: Dr.D.MERLIN - 0425/840820

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PA7

	indagine	ţ	
	contiors		

- note :

Microzonazione sismica nel comune di Gubbio

Comune di Gubbio - località :

Area centro-est / Macroarea 35 / Mocaiana

- data : - quota inizio : 21/11/2005 Piano campagna Falda non rilevata

- prof. falda : - pagina :

2.9	

n°	Profondità (m)	à (m) PARAMETRO		ELA	BORA		VCA	β	Nspt			
			М	min	Max	½(M+min)	s	M-s	M+s			
1	0,00 6,00	N Rpd	5,0 29,0	2 12	19 106	3,5 20,7	4,7 25,7	3,3	9,7 54,7	5 29	1,14	6
2	6,00 10,50	N Rpd	13,7 61,8	9 46	20 88	11,4 54,0	3,4 13,2	10,3 48,6	17,1 74,9	14 63	1,14	16

s: scarto quadratico medio

M: valore medio min: valore minimo Max: valore massimo s: scarto quadratico medio numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) Nspt: numero Colpi prova SPT (avanzamento δ = 30 cm) Nspt: numero Colpi prova SPT (avanzamento δ = 30 cm)

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m)	Prof.(m) LITOLOGIA		١	IATUR	A GR	ANULA	RE	N/	TURA	COE	SIVA
				DR	DR ø'	9' E'	Ysat	Yd	Cu	Ysat	W	е
1 2	0.00 6.00 6.00 10.50	Argilla Limosa con liv. ghiaioso Sabbia limosa con ciottoli	6 16	21.7 44.0	28.4 31.8	238 315	1.89 1.97	1.43 1.55	0.38 1.00	1.85 1.97	37 28	1.000 0.750

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa \emptyset' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu (kg/cm²) = coesione non drenata

 $E'\left(kg/cm^{z}\right)=\text{modulo di deformazione drenato} \qquad W\%=\text{contenuto d'acqua} \\ Ysat, Yd\left(t/m^{s}\right)=\text{peso di volume saturo e secco (rispettivamente) del terreno}$

Via della Piaggiola, 152 06024 GUBBIO (PG)

- indagine :

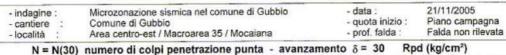
Riferimento: 105-05

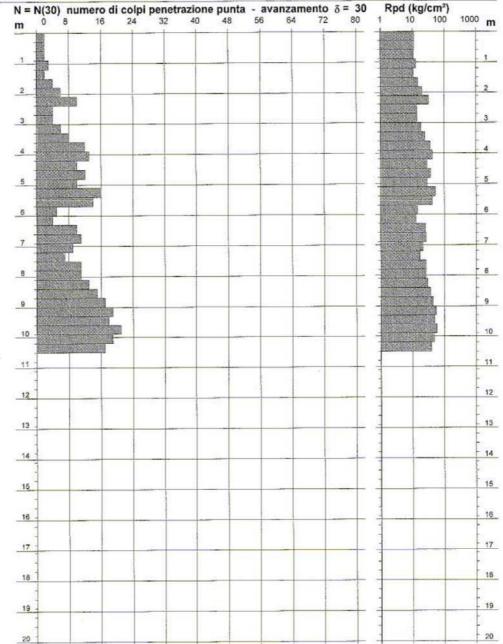
n° PA8

PROVA PENETROMETRICA DINA TABELLE VALORI DI RESISTENZA		n°
Microzonazione sismica nel comune di Gubbio	- data :	21/11/2005

- cantiere : Comune di Gubbio - località : Area centro-est / Macroarea 35 / Mocaiana - note :							- quota - prof. - pagir	a inizio: Pia falda: Fal	da: Falda non rilev		
Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.(n	n)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta
0.00 -	0.30	2	15,5		1	5,40 - 5	,70	14	71,8		5
0.30 -	0.60	2	15,5		1	5,70 - 6	,00	5	25,7	****	5
0,60 -	0.90		13,7	****	2	6,00 - 6	,30	4	20,5		5
0,90 -	1,20	2	20,6		2	6,30 - 6	,60	10	51,3		5
1,20 -	1.50	2	13.7		2	6,60 - 6	,90	11	52,1		6
1,50 -	1.80	4	27,5		2	6,90 - 7	,20	9	42,6	1	6
1,80 -	2,10	6	41,2	****	2	7,20 - 7	,50	7	33,1	-	6
2,10 -	2,40	10	61,7		3	7,50 - 7	.80	11	52,1		6
2.40 -	2.70	4	24,7	-	3	7,80 - 8	,10	11	52,1		6
2,70 -	3,00	4	24,7		3	8,10 - 8	.40	13	57,1		7
3.00 -	3,30	6	37,0	****	3	8,40 - 8	.70	15	65,9	****	7
3,30 -	3,60	8	49,3	****	3	8,70 - 9	.00	17	74,7	-	7
3.60 -	3.90	12	67,2	****	4	9,00 - 9	,30	19	83,4		7
3.90 -	4,20	13	72.8		4	9,30 - 9	,60	18	79,0	****	7
4.20 -	4,50	10	56,0		4	9,60 - 9	.90	21	86,0		8
4.50 -	4.80	12	67,2		4	9,90 - 10	,20	19	77,8		8
4.80 -	5.10	10	56.0		4	10,20 - 10	,50	17	69,6		8
5,10 -	5,40	16	82,1		5						

⁻ PENETROMETRO DINAMICO tipo : TG 73-100/200
- M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - A (area punta)= 20,43 cm² - D(diam. punta)= 51,00 mm
- Numero Colpi Punta N = N(30) [δ = 30 cm] - Uso rivestimento / fanghi iniezione : SI


Via della Piaggiola, 152 06024 GUBBIO (PG)


Riferimento: 105-05

Scala 1: 100

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° PA8

- PENETROMETRO DINAMICO tipo : TG 73-100/200

Subserve by . Or D.MERLIN - 0425/840620

⁻ M (massa battente)= 73,00 kg $\,$ - H (altezza caduta)= 0,75 m $\,$ - A (area punta)= 20,43 cm 2 $\,$ - D(diam. punta)= 51,00 mm $\,$ - Uso rivestimento / fanghi iniezione $\,$: SI

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PA8

indagine	:
cantiere	
località	:

- note :

Microzonazione sismica nel comune di Gubbio

Comune di Gubbio

Area centro-est / Macroarea 35 / Mocaiana

- data : - quota inizio: 21/11/2005 Piano campagna Falda non rilevata

- p

- prof. falda:

agina :		
CA CA	VCA	ß

n°	Profondità (m)	ndità (m) PARAMETRO ELABORAZIO	ZIONE ST	ATIST	ICA		VCA	β	Nspt			
			М	min	Max	1/2(M+min)	s	M-s	M+s			
1	0,00 3,60	N Rpd	4,4 28,7	2 14	10 62	3,2 21,2	2,6 15,5	1,8 13,3	7,0 44,2	4 26	1,14	5
2	3,60 10,50	N Rpd	12,8 60,7	4 21	21 86	8,4 40,6	4,5 18,1	8,3 42,6	17,3 78,8	13 62	1,14	15

M: valore medio

min: valore minimo

Max: valore massimo

s: scarto quadratico medio

N: numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) Spt: numero colpi prova SPT (avanzamento δ = 30 cm) Nspt: numero colpi prova SPT (avanzamento δ = 30 cm)

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m)	LITOLOGIA	Nspt	1	IATUR	A GR	ANULA	RE	N/	ATURA	COES	SIVA
				DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е
1 2	0.00 3.60 3.60 10.50	Limo Argilloso con inclusi Sabbia limosa con ciottoli		18.3 42.5	28.0 31.5	230 307	1.88 1.96	1.41 1.54	0.31 0.94	1.83 1.96	39 29	1.061 0.773

Nspt: numero di colpi prova SPT (avanzamento § = 30 cm)

DR % = densità relativa \mathfrak{g}' (*) = angolo di attrito efficace E' ($\mathsf{kg/cm^2}$) = modulo di deformazione drenato $\mathsf{W}\%$ = contenuto d'acqua Ysat, Yd ($\mathsf{l/m^2}$) = peso di volume saturo e secco (rispettivamente) del terreno

Software by: Dr.D.MERLIN - 0425/840820,

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

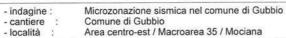
PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

n° PA9

- C	ndagine antiere ocalità iote :	: Con	rozonazione sisn nune di Gubbio a centro-est / Ma						a inizio : Pia falda : Fa	/11/2005 ano campag Ida non rilev	
Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.	(m)	N(colpi p)	Rpd(kg/cm²	N(colpi r)	ast
0.00 -	0.30	2	15,5		1	5.40 -	5,70	6	30,8		5
0.30 -	0,60	3	23,2		1	5,70 -	6,00	7	35,9		5
0,60 -	0.90	4	27.5		2	6,00 -	6,30	10	51,3		5
0,90 -	1,20	3	20,6	22550112	2	6,30 -	6,60	10	51,3		5
1,20 -	1.50	3	20,6	****	2	6,60 -	6,90	10	47,3		6
1,50 -	1.80	4	27,5		2	6,90 -	7,20	12	56,8	1	6
1,80 -	2,10	3	20,6		2	7,20 -	7,50	23	108,8		6
2,10 -	2,40	4	24.7		3	7,50 -	7,80	24	113,6		6
2,40 -	2,70	12	74.0		3	7,80 -	8,10	29	137,2		6
2,70 -	3,00	12	74.0	****	3	8,10 -	8,40	33	144,9	****	7
3.00 -	3.30	17	104,9		3	8,40 -	8,70	12	52,7	****	7
3,30 -	3,60	20	123,4		3	8,70 -	9,00	20	87,8		7
3,60 -	3,90	23	128,8	****	4	9,00 -	9,30	20	87,8	****	7
3,90 -	4.20	5	28.0		4	9,30 -	9,60	23	101,0	2000	7
4,20 -	4,50	5 3	16.8		4	9,60 -	9,90	20	81,9	****	8
4.50 -	4.80	4	22.4	****	4	9,90 - 1	10,20	21	86,0		8
4.80 -	5.10		16,8		4	10,20 - 1	10,50	22	90,1		8
5,10 -	5,40	3 5	25.7		5	MONEY P	OUTSEL		New York		

Software by Dr.D.MERLIN - 0425/840820

⁻ PENETROMETRO DINAMICO tipo : TG 73-100/200

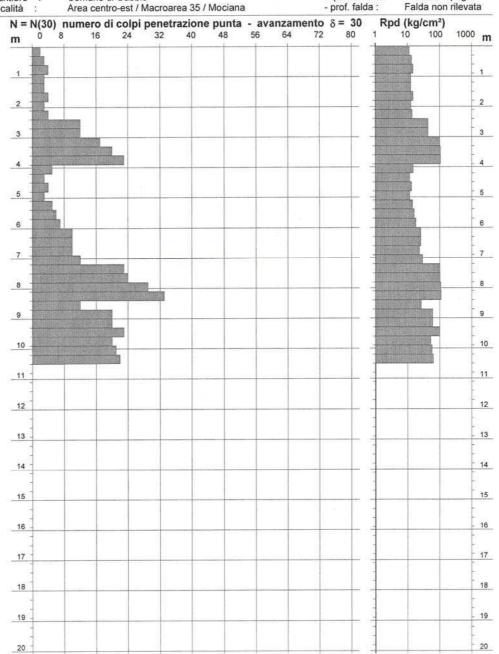

⁻ M (massa battente)= 73,00 kg $^{-}$ H (altezza caduta)= 0,75 m $^{-}$ A (area punta)= 20,43 cm 2 - D(diam. punta)= 51,00 mm - Numero Colpi Punta N = N(30) [δ = 30 cm] - Uso rivestimento / fanghi iniezione : SI

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° PA9



Comune di Gubbio

- data : - quota inizio :

Scala 1: 100

22/11/2005 Piano campagna

- PENETROMETRO DINAMICO tipo: TG 73-100/200

- M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - A (area punta)= 20,43 cm² - D(diam. punta)= 51,00 mm

- Numero Colpi Punta N = N(30) [δ = 30 cm]

- Uso rivestimento / fanghi iniezione : SI

Software by: Dr.D.MERLIN - 0425/840820

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PA9

- indagine : - cantiere : - località : - note :	Microzonazione sismica nel comune di Gubbio Comune di Gubbio Area centro-est / Macroarea 35 / Mociana	- data : - quota inizio : - prof. falda : - pagina :	22/11/2005 Piano campagna Falda non rilevata 1

n°	Profor	ndità (m)	PARAMETRO		ELA	BORA	ZIONE ST	ATIST	ICA		VCA	β	Nspt
				М	min	Max	½(M+min)	s	M-s	M+s			
1	0,00	2,40	N Rpd	3,3 22,5	2 16	4 28	2,6 19,0	4,0	2,5 18,5	4,0 26,5	3 21	1,14	3
2	2,40	3,90	N Rpd	16,8 101,0	12 74	23 129	14,4 87,5			****	17 102	1,14	19
3	3,90	6,00	N Rpd	4,7 25,2	3 17	7 36	3,9 21,0	1,5 7,1	3,2 18,1	6,2 32,3	5 27	1,14	6
4	6,00	10,50	N Rpd	19,3 86,6	10 47	33 145	14,6 67,0	7,1 31,1	12,2 55,5	26,4 117,6	19 85	1,14	22

M: valore medio min: valore minimo Max: valore massimo N: numero Colpi Punta prova penetrometrica dinamica (avanzamento β = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) Nspt: numero Colpi prova SPT (avanzamento β = 30 cm) Nspt: numero Colpi prova SPT (avanzamento β = 30 cm)

Nspt - PARAMETRI GEOTECNICI

n°	Prof.	(m)	LITOLOGIA	Nspt	N	IATUR	A GR	ANULA	RE	NATURA COESIVA			
					DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е
1	0.00	2.40	Argilla Limosa	3	11.3	27.2	214	1.86	1.38	0.19	1.78	44	1.194
2	2.40	3.90	Sabbia Limosa con inclusi	19	48.5	32.7	338	1.98	1.58	1.19	2.01	26	0.687
3	3.90	6.00	Limo Argilloso	6	21.7	28.4	238	1.89	1.43	0.38	1.85	37	1.000
4	6.00	10.50	Sabbia Limosa con liv. ghiaiosi	22	53.0	33.6	361	2.00	1.61	1.38	2.04	23	0.628

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa ø' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu (kg/cm²) = coesione non drenata

E' (kg/cm²) = modulo di deformazione drenato W% = contenuto d'acqua Ysat, Yd (t/m³) = peso di volume saturo e secco (rispettivamente) del terreno

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

n° PA10

- c	ndagine antiere ocalità ote :	: Com	ozonazione sisn nune di Gubbio a centro-est / Ma						a inizio : Pia falda : Fal	11/2005 ino campagi da non rilev	
Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	ast
0.00 -	0.30	2	15,5		1	5,40 -	5,70	18	92,3		5
0,30 -	0,60	2 3 4	23,2	-	1	5,70 -	6,00	24	123,1		5
0,60 -	0.90	4	27,5		2	6,00 -	6,30	20	102,6	****	5
0.90 -	1,20	4	27,5		2	6,30 -	6,60	14	71,8		5
1,20 -	1,50		20,6	2000	2	6,60 -	6,90	18	85,2		6
1,50 -	1.80	3	20,6	2000	2	6,90 -	7,20	24	113,6		6
1,80 -	2,10	3	20,6	-	2	7,20 -	7,50	12	56,8		6
2,10 -	2.40	2	12,3	2000	3	7,50 -	7,80	17	80,4	\$ 31 H 2 H 31	6
2.40 -	2.70	2	12.3		3	7,80 -	8,10	13	61,5		6
2.70 -	3,00	3	18.5		3	8,10 -	8,40	23	101,0	****	7
3,00 -	3,30	3	18.5		3	8.40 -	8,70	30	131,7		7
3,30 -	3,60	2	12,3	200	3	8,70 -	9,00	27	118,6		7
3,60 -	3,90	2	11,2		4	9,00 -	9,30	29	127,4		7
3,90 -	4.20	2	11,2	22.01	4	9,30 -	9,60	28	123,0	****	7
4,20 -	4,50	3 3 2 2 3 3 2 2 2 2 2 2 3 3	11,2		4	9.60 -	9.90	31	127,0		8
4,50 -	4.80	3	16,8	017/40	4	9.90 -	10.20	30	122,9	****	8
4,80 -	5,10	4	22,4		4	10.20 -		30	122,9		8
5,10 -	5,40	7	35,9		5	100000000000000000000000000000000000000	BETTER		2557		

Software by: Dr.D.MERLIN - 0425/840820

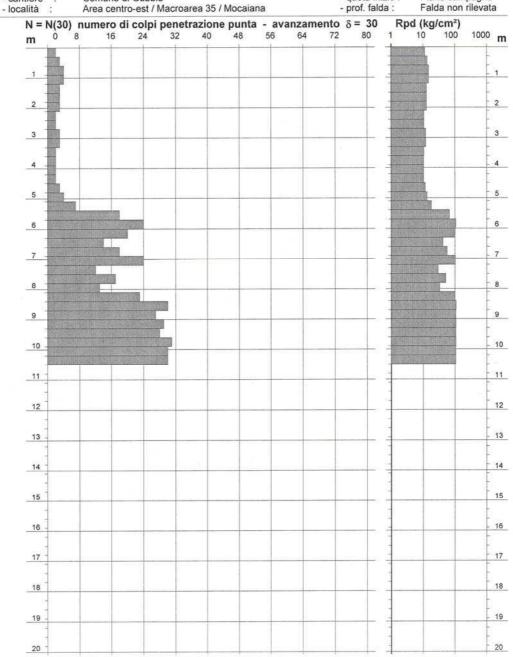
⁻ PENETROMETRO DINAMICO tipo : TG 73-100/200 - M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - Numero Colpi Punta N = N(30) [δ = 30 cm] - A (area punta)= 20,43 cm² - D(diam. punta)= 51,00 mm - Uso rivestimento / fanghi iniezione : SI

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° PA10


- indagine : - cantiere : Microzonazione sismica nel comune di Gubbio

Comune di Gubbio

- quota inizio:

Scala 1: 100 25/11/2005 - data :

Piano campagna Falda non rilevata

- PENETROMETRO DINAMICO tipo: TG 73-100/200

- M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - A (area punta)= 20,43 cm² - D(diam. punta)= 51,00 mm

- Numero Colpi Punta N = N(30) [δ = 30 cm]

- Uso rivestimento / fanghi iniezione : SI

Software by: Dr.D.MERLIN - 0425/840820

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PA10

-	indagine	
_	cantiere	

Microzonazione sismica nel comune di Gubbio

Comune di Gubbio

- data : - quota inizio : - prof. falda :

25/11/2005 Piano campagna Falda non rilevata

- località : - note :

Area centro-est / Macroarea 35 / Mocaiana

- pagina :

n°	Profondità (n) PARAMETRO		ELA	BORA	ZIONE ST	ATIST	ICA		VCA	β	Nspt
4			М	min	Max	½(M+min)	s	M-s	M+s			
1	0,00 5,40	N Rpd	3,0 18,8	2 11	7 36	2,5 15,0	1,2 6,9	1,8 11,9	4,2 25,6	3 19	1,14	3
2	5,40 10,50	N Rpd	22,8 103,6	12 57	31 132	17,4 80,2	6,6 24,6	16,3 79,0	29.4 128,3	23 105	1,14	26

M: valore medio

min: valore minimo

Max: valore massimo

s: scarto quadratico medio

N: numero Colpi Punta prova penetrometrica dinamica (avanzamento β = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) β : Coefficiente correlazione con prova SPT (valore teorico β t = 1,14) Nspt: numero colpi prova SPT (avanzamento δ = 30 cm)

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m)	LITOLOGIA		١	NATUR	A GR	ANULA	RE	N/	ATURA	COE	SIVA
	CONC. NO.			DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е
1 2	0.00 5.40 5.40 10.50	Argilla Limosa Sabbia limosa con ciottoli		11.3 59.0	27.2 34.8	214 392	1.86 2.03	1.38 1.65	0.19 1.63	1.78 2.09	44 21	1.194 0.556

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa ø' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu (kg/cm²) = coesione non drenata

E' (kg/cm²) = modulo di deformazione drenato W% = contenuto d'acqua Ysat, Yd (t/m³) = peso di volume saturo e secco (rispettivamente) del terreno

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

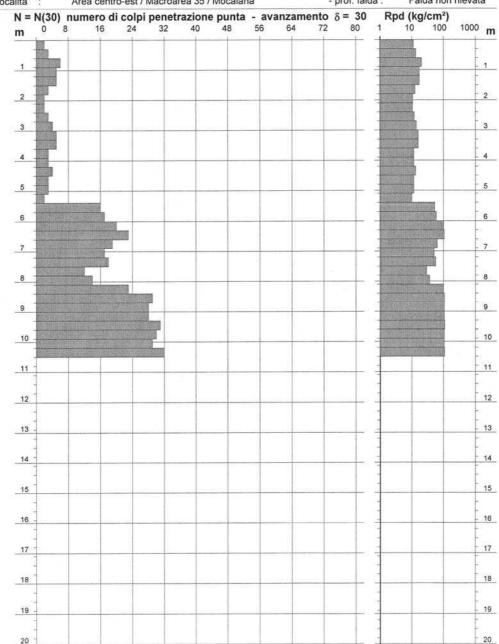
PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

n° PA11

- c	ndagine antiere ocalità ote :	: Con	ozonazione sisn nune di Gubbio a centro-est / Ma						a inizio : falda :	25/11/2005 Piano campag Falda non rilev 1	
Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof	f.(m)	N(colpi p)	Rpd(kg/cr	m²) N(colpi r)	asta
0.00 -	0.30	2	15,5		1	5.40 -	5,70	16	82,1		5
0.30 -	0.60	3	23,2		1	5.70 -	6,00	17	87,2		
0.60 -	0.90	6	41,2		2	6,00 -	6,30	20	102,6		5 5 5
0.90 -	1.20	5	34,3	***	2	6,30 -	6,60	23	118,0		5
1,20 -	1,50	5	34,3	****	2	6,60 -	6,90	19	89,9		6
1.50 -	1.80	3	20,6		2	6,90 -	7,20	17	80,4		6 6 6 7
1.80 -	2,10	2	13,7		2	7,20 -	7,50	18	85,2		6
2,10 -	2.40	2	12,3	(3	7,50 -	7,80	12	56,8		6
2,40 -	2.70	3	18,5	****	3	7.80 -	8,10	14	66,3		6
2,70 -	3.00	4	24,7	****	3	8,10 -	8,40	23	101,0		7
3,00 -	3.30	5	30.8		3	8,40 -	8,70	29	127,4		7
3,30 -	3.60	5	30,8	****	3	8,70 -	9,00	28	123,0		7
3,60 -	3,90	3	16.8		4	9,00 -	9,30	28	123,0		7
3,90 -	4.20	3	16,8	****	4	9,30 -	9,60	31	136,1		7
4.20 -	4.50	4	22.4		4	9,60 -	9,90	30	122,9		8
4.50 -	4.80	3	16,8		4	9,90 -	10,20	29	118,8		8 8
4,80 -	5.10	236553223455334332	16,8		4	10,20 -	10,50	32	131,1		8
5.10 -	5.40	2	10,3	****	5				accourage a		

Software by Dr.D.MERLIN - 0425/840820

Via della Piaggiola, 152 06024 GUBBIO (PG)


Riferimento: 105-05

Scala 1: 100

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° PA11

- PENETROMETRO DINAMICO tipo : TG 73-100/200

- M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - A (area punta)= $20,43 \text{ cm}^2$ - D(diam. punta)= 51,00 mm - Numero Colpi Punta N = N(30) [δ = 30 cm] - Uso rivestimento / fanghi iniezione : SI

Software by: Dr.D.MERLIN - 0425/840820

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PA11

indagine	:	
cantioro		į,

- note :

Microzonazione sismica nel comune di Gubbio

Comune di Gubbio cantiere - località

Area centro-est / Macroarea 35 / Mocaiana

- data : - quota inizio :

25/11/2005 Piano campagna

- prof. falda: - pagina :

Falda non rilevata 1

n°	Profondità (m)	PARAMETRO		ELA	BORA	ZIONE ST	ATIST	ICA	,	VCA	β	Nspt
			М	min	Max	½(M+min)	s	M-s	M+s			
1	0,00 5,40	N Rpd	3,5 22,2	2 10	6 41	2,8 16,2	1,2 8,7	2,3 13,5	4,7 31,0	4 25	1,14	5
2	5,40 10,50	N Rpd	22,7	12 57	32 136	17,4 79,9	6,6 24,1	16,2 78,9	29,3 127,2	23 104	1,14	26

M: valore medio min: valore minimo Max: valore massimo N: numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) Rpd: resistenza dinamica alla punta (kg/cm²) Nspt: numero Colpi prova SPT (avanzamento δ = 30 cm)

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m)	LITOLOGIA		٨	IATUR	A GR	ANULA	RE	N/	ATURA	COE	SIVA
				DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е
1 2	0.00 5.40 5.40 10.50	Argilla Limosa Sabbia Limosa con ghiaia	5 26	18.3 59.0	28.0 34.8	230 392	1.88 2.03	1.41 1.65	0.31 1.63	1.83 2.09	39 21	1.061

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa ø' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu (kg/cm²) = coesione non drenata

E' (kg/cm²) = modulo di deformazione drenato W% = contenuto d'acqua Ysat, Yd (t/m²) = peso di volume saturo e secco (rispettivamente) del terreno

Via della Piaggiola, 152 06024 GUBBIO (PG)

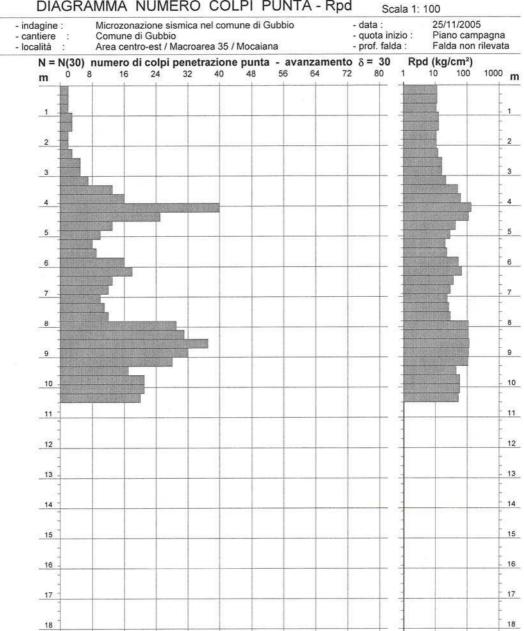
Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

n° PA12

- c	ndagine antiere ocalità ote :	: Con	ozonazione sisn nune di Gubbio a centro-est / Ma					dataquotaprof.pagir	a inizio : Pia falda : Fa	25/11/2005 Piano campagna Falda non rilevata 1		
Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.(n	n)	N(colpi p)	Rpd(kg/cm²	N(colpi r)	ast	
0.00 -	0.30	2	15,5		1	5,40 - 5,	,70	9	46,2		5	
0,30 -	0.60	2	15,5		1	5,70 - 6,	.00	16	82,1	****	5	
0.60 -	0.90	2	13.7	****	2		,30	18	92,3		5	
0,90 -	1,20	2 2 2 3 3 2 2 3 5 5 7	20,6	****	2		.60	13	66,7		5	
1,20 -	1,50	3	20,6	****	2	6,60 - 6,	,90	12	56,8		6	
1.50 -	1.80	2	13,7		2	6.90 - 7.	,20	10	47,3		6666	
1,80 -	2,10	2	13,7		2	7.20 - 7.	,50	11	52,1		6	
2.10 -	2,40	3	18.5	****	3	7,50 - 7,	,80	12	56,8		6	
2.40 -	2.70	5	30,8		3	7,80 - 8,	,10	29	137,2		6	
2,70 -	3,00	5	30.8		3	8,10 - 8,	,40	31	136,1		7	
3,00 -	3,30	7	43,2	****	3	8.40 - 8.	,70	37	162,5		7	
3,30 -	3,60	13	80,2		3	8,70 - 9,	,00	32	140,5		7	
3.60 -	3,90	16	89,6	****	4	9.00 - 9.	,30	28	123,0		7	
3,90 -	4.20	40	224,1	****	4	9,30 - 9,	,60	17	74,7		7	
4,20 -	4.50	25	140.0		4	9,60 - 9,	,90	21	86,0		8	
4.50 -	4.80	13	72,8		4	9,90 - 10,	,20	21	86,0		8	
4,80 -	5,10	10	56,0		4	10,20 - 10,		20	81,9		8	
5,10 -	5,40	8	41.0		5	and the same of th						

Software by Dr D.MERLIN - 0425/840820


⁻ PENETROMETRO DINAMICO tipo : TG 73-100/200 - M (massa battente) = 73,00 kg - H (altezza caduta) = 0,75 m - Numero Colpi Punta N = N(30) [δ = 30 cm] - A (area punta) = 20,43 cm² - D(diam. punta) = 51,00 mm - Uso rivestimento / fanghi iniezione : SI

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° PA12

- PENETROMETRO DINAMICO tipo: TG 73-100/200

- M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - A (area punta)= $20,43 \text{ cm}^2$ - D(diam. punta)= 51,00 mm - Numero Colpi Punta N = N(30) [δ = 30 cm] - Uso rivestimento / fanghi iniezione : SI

Software by: Dr.D.MERLIN - 0425/840820

19

20

P.IVA 02062020546

19

20

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PA12

- indagine : - cantiere : - località :	Microzonazione sismica nel comune di Gubbio Comune di Gubbio Area centro-est / Macroarea 35 / Mocaiana	- data : - quota inizio : - prof. falda :	25/11/2005 Piano campagna Falda non rilevata
- note :	Area centro-est/iviacroarea 55 / iviocalaria	- prof. falda .	1

n°	Profondità (m)	PARAMETRO		ELA	BORA	11	VCA	β	Nspt			
			М	min	Max	½(M+min)	s	M-s	M+s			
1	0,00 3,30	N Rpd	3,3 21,5	2 14	7 43	2,6 17,6	1,7 9,5	1,6 12,0	5,0 31,1	3 20	1,14	3
2	3,30 10,50	N Rpd	19,3 93,0	8 41	40 224	13,6 67,0	9,3 44,6	10,0 48,4	28,5 137,6	19 92	1,14	22

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m)	LITOLOGIA	Nspt	١	ATUR	A GR	ANULA	RE	N/	TURA	COES	ESIVA		
				DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е		
1	0.00 3.30	Argilla Limosa	3	11.3	27.2	214	1.86	1.38	0.19	1.78	44	1.194		
2	3.30 10.50	Limo Sabbioso con liv. ghiaiosi	22	53.0	33.6	361	2.00	1.61	1.38	2.04	23	0.628		

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa ø' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu (kg/cm²) = coesione non drenata Cu (kg/cm²) = peso di volume saturo e secco (rispettivamente) del terreno

M: valore medio min: valore minimo Max: valore massimo numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) Nspt: numero Colpi prova SPT (avanzamento δ = 30 cm) Nspt: numero colpi prova SPT (avanzamento δ = 30 cm)

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

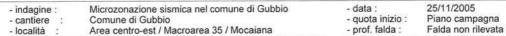
PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

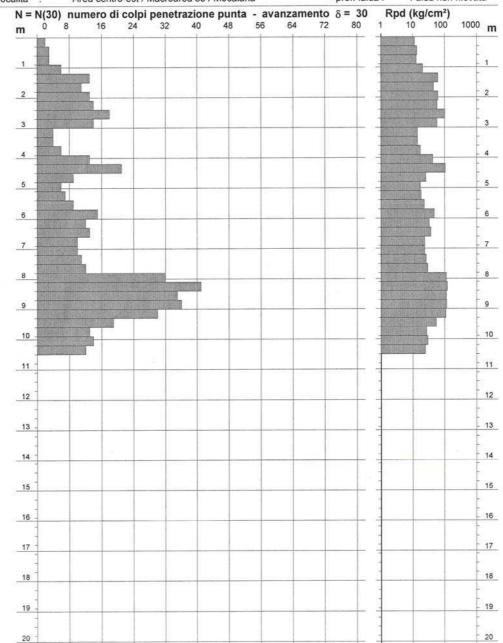
n° PA13

- c	ndagine antiere ocalità ote :	: Com	ozonazione sisn nune di Gubbio n centro-est / Ma				0	- quota inizio :		5/11/2005 Piano campagna Falda non rilevata 1	
Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta
0.00 -	0.30	2	15,5		1	5,40 -	5,70	9	46,2		5
0,30 -	0,60	3	23,2		1	5,70 -	6,00	15	77,0	-777	5
0,60 -	0.90	2 3 3 6	20,6		2	6.00 -	6,30	12	61,6		55556666
0.90 -	1,20	6	41,2		2	6.30 -	6,60	13	66,7		5
1,20 -	1,50	13	89,2		2	6,60 -	6,90	10	47,3		6
1,50 -	1.80	11	75,5	****	2	6,90 -	7,20	10	47,3	-	6
1,80 -	2.10	13	89,2	****	2	7,20 -	7,50	11	52,1		6
2,10 -	2.40	14	86.4		3	7,50 -	7,80	12	56,8		6
2,40 -	2,70	18	111,0		3	7.80 -	8.10	32	151,4		6
2.70 -	3,00	14	86,4	****	3	8,10 -	8,40	41	180,0	****	7
3,00 -	3.30	4	24,7	****	3	8,40 -	8,70	35	153,7		7
3,30 -	3,60	4	24.7		3	8,70 -	9,00	36	158,1		7
3.60 -	3,90	4 6	33,6		4	9,00 -	9,30	30	131,7		7
3,90 -	4.20	13	72.8		4	9.30 -	9,60	19	83,4		7
4,20 -	4.50	21	117,6		4	9.60 -		13	53,3		8
4,50 -	4.80		50,4		4	9,90 -	10,20	14	57,3		8
4.80 -	5,10	9	33,6		4	10,20 -		12	49,2		8
5,10 -	5.40	7	35,9		5						

Software by: Dr.D.MERLIN - 0425/840820

⁻ PENETRO DINAMICO tipo : TG 73-100/200 - M (massa battente) = 73,00 kg - H (altezza caduta) = 0,75 m - Numero Colpi Punta N = N(30) [δ = 30 cm] - A (area punta) = 20,43 cm² - D(diam. punta) = 51,00 mm - Uso rivestimento / fanghi iniezione : SI


Via della Piaggiola, 152 06024 GUBBIO (PG)


Riferimento: 105-05

Scala 1: 100

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° PA13

⁻ PENETROMETRO DINAMICO tipo : TG 73-100/200

Software by Dr.D.MERLIN - 0425/840820

⁻ M (massa battente)= 73,00 kg $\,$ - H (altezza caduta)= 0,75 m $\,$ - A (area punta)= 20,43 cm 2 $\,$ - D(diam. punta)= 51,00 mm $\,$ - Uso rivestimento / fanghi iniezione $\,$: SI

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PA13

- indagine	
- cantiere	i.
 località 	:

- note :

Microzonazione sismica nel comune di Gubbio

Comune di Gubbio

Area centro-est / Macroarea 35 / Mocaiana

- data : - quota inizio : 25/11/2005 Piano campagna

- prof. falda:

Falda non rilevata

pagina	

ina	÷			

n°	Profondità (m)	PARAMETRO	ELABORAZIONE STATISTICA								β	Nspt
			М	min	Max	½(M+min)	s	M-s	M+s		**	
1	0,00 10,50	N Rpd	14,0 71,6	2 16	41 180	8,0 43,5	9,8 42,9	4,2 28,7	23,8 114,4	14 72	1,14	16

M: valore medio min: valore minimo Max: valore massimo s: scarto quadratico medio

N: numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) δ : Coefficiente correlazione con prova SPT (valore teorico δ = 1,14) Nspt: numero colpi prova SPT (avanzamento δ = 30 cm)

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m)	f.(m) LITOLOGIA		١	NATUR	A GR	ANULA	N/	ATURA	COE	ESIVA			
				DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е		
1	0.00 10.50	Sabbia Limosa con liv. di ghiaia	16	44.0	31.8	315	1.97	1.55	1.00	1.97	28	0.750		

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa ø' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu (kg/cm²) = coesione non drenata

E' (kg/cm²) = modulo di deformazione drenato W% = contenuto d'acqua Ysat, Yd (t/m³) = peso di volume saturo e secco (rispettivamente) del terreno

Via della Piaggiola, 152 06024 GUBBIO (PG)

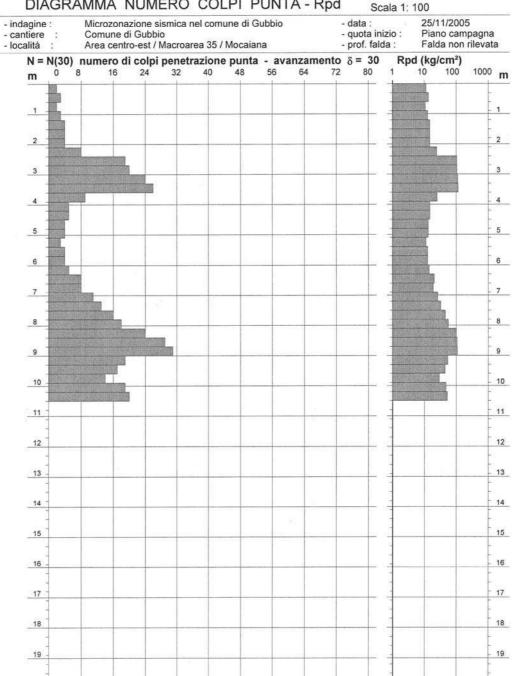
Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

n° PA14

- c	ndagine antiere ocalità ote :	: Com	ozonazione sisn nune di Gubbio a centro-est / Ma					- data : - quota inizio : - prof. falda : - pagina :		25/11/2005 Piano campagna Falda non rilevata 1		
Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.	(m)	N(colpi p)	Rpd(kg/cm²) N(colpi r)	asta	
0,00 -	0.30	2	15,5		1	5,40 -	5,70	4	20,5		5	
0,30 -	0.60	3	23,2		1	5,70 -	6,00	4	20,5	****	5	
0.60 -	0,90	2 3 2 3	13,7	****	2	6.00 -	6,30	5	25,7		5 5 5 5	
0,90 -	1.20	3	20,6		2	6,30 -	6,60	5 8	41,0		5	
1,20 -	1.50	4	27,5	-	2	6,60 -	6,90	8	37,9		6	
1,50 -	1,80	4	27,5		2	6,90 -	7,20	11	52,1		6	
1,80 -	2,10		27,5		2	7,20 -	7,50	13	61,5	****	6 6 6	
2,10 -	2.40	4 8	49,3	****	3	7,50 -	7,80	16	75,7		6	
2.40 -	2.70	19	117,2	****	3	7,80 -	8,10	18	85,2		6	
2,70 -	3.00	20	123,4	****	3	8,10 -	8,40	24	105,4		7	
3,00 -	3,30	24	148,0	****	3	8,40 -	8,70	29	127,4		7	
3,30 -	3,60	26	160,4	****	3	8,70 -	9,00	31	136,1	****	7	
3,60 -	3,90	9	50.4		4	9,00 -	9,30	19	83,4	7777	7	
3,90 -	4.20	5	28.0	****	4	9,30 -	9,60	17	74.7		7	
4,20 -	4.50	5	28,0		4	9,60 -	9,90	14	57,3		8	
4,50 -	4,80	4	22,4		4	9,90 - 1	10,20	19	77,8		8	
4,80 -	5.10	4	22,4		4	10,20 - 1		20	81,9		8 8 8	
5,10 -	5,40	3	15,4	****	5	- H (1999)						

Software by: Dr D MERLIN - 0425/840820


⁻ PENETROMETRO DINAMICO tipo : TG 73-100/200 - M (massa battente) = 73,00 kg - H (altezza caduta) = 0,75 m - Numero Colpi Punta N = N(30) [δ = 30 cm] - A (area punta) = 20,43 cm² - D(diam. punta) = 51,00 mm - Uso rivestimento / fanghi iniezione : SI

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

n° PA14

- PENETROMETRO DINAMICO tipo : TG 73-100/200

Software by: Dr.D.MERLIN - 0425/840820

20

⁻ M (massa battente)= 73,00 kg $\,$ - H (altezza caduta)= 0,75 m $\,$ - A (area punta)= 20,43 cm 2 $\,$ - D(diam. punta)= 51,00 mm $\,$ - Uso rivestimento / fanghi iniezione $\,$: SI

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PA14

-	indagine	:	
-	cantiere		:
-	località	:	

Microzonazione sismica nel comune di Gubbio

Comune di Gubbio

Area centro-est / Macroarea 35 / Mocaiana

- quota inizio :

25/11/2005 Piano campagna Falda non rilevata

- prof. falda: - pagina :

n°	Profondità (n) PARAMETRO		ELA	BORA	ZIONE ST	ATIST	ICA		VCA	β	Nspt
			M	min	Max	1/2(M+min)	s	M-s	M+s			
1	0,00 2,40	N Rpd	3,8 25,6	2 14	8 49	2,9 19,7	1,9 11,0	1,8 14,6	5,7 36,6	4 27	1,14	5
2	2,40 3,60	N Rpd	22,3 137,2	19 117	26 160	20,6 127,2			_	22 135	1,14	25
3	3,60 7,50	N Rpd	6,4 32,8	3 15	13 62	4,7 24,1	3,1 14,5	3,3 18,3	9,5 47,2	6 31	1,14	7
4	7,50 10,50	N Rpd	20,7 90,5	14 57	31 136	17,4 73,9	5,6 24,8	15,1 65,7	26,3 115,3	21 92	1,14	24

M: valore medio min: valore minimo Max: valore massimo N: numero Colpi Punta prova penetrometrica dinamica (avanzamento β = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) Nspt: numero Colpi prova SPT (avanzamento β = 30 cm) Nspt: numero colpi prova SPT (avanzamento β = 30 cm)

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m)		LITOLOGIA	Nspt	٨	IATUR	A GR	ANULA	N/	ATURA	COES	ESIVA			
					DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е		
1	0.00	2.40	Argilla Limosa	5	18.3	28.0	230	1.88	1.41	0.31	1.83	39	1.061		
2	2.40	3.60	Ghiaia media e Sabbia fine		57.5	34.5	384	2.02	1.64	1.56	2.08	21	0.574		
3	3.60	7.50	Limo Sabbioso	7	25.0	28.8	245	1.90	1.45	0.44	1.86	36	0.972		
4	7.50	10.50	Ghiaia media e Sabbia fine	24	56.0	34.2	376	2.01	1.63	1.50	2.07	22	0.591		

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa ø' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu (kg/cm²) = coesione non drenata

E' (kg/cm^2) = modulo di deformazione drenato W% = contenuto d'acqua Ysat, Yd (t/m^2) = peso di volume saturo e secco (rispettivamente) del terreno

Software by: Dr.D.MERLIN - 0425/840820

Sondaggi geognostici a cura del Dott. Geol. Arnaldo Ridolfi

STRATIGRAFIA - SA8

Difi	40E 400/0E I	2012-20 ar 2010-201					W 9	. C	SCALA 1:125 Pagina 1/
	<u>nto: 105-132/05 - I</u> - Area Centro-Est /						e c	JI G	Subbio Sondaggio: SA8 Quota: p,c,
	esecutrice: Perige	o Sondaggi Srl							Data:
Coordina									Redattore: Dott. Geol. Arnaldo Ridolfi
	ione: a rotazione a			S.P.T.	D/	VTV 0.	7 .		
n v r s F	z metri LITOLOGIA	Campioni RP VT	Prel. % 0 100	S.P.T.	N 0 -	- 10	0	m	DESCRIZIONE
01									Ghiaia minuta poligenica a basso sorting e basso grac di arrotondamento, frammista a limo sabbioso.
	2 5 - 5 - 5 - 5				7 2 7			2,0	Limo argillosa.
	3.4							255	
	5					0.000		4,3	Limi sabbiosi prevalenti con inclusioni di clasti centimetrici poligenici.
	6							SUSTRE.	
	9		100000000		. 87	8 2 7 5		8,0	Limi argillosi con inclusioni di clasti centimetrici poligenici.
	10					8310	1	0,0	Ghiaia minuta poligenica a basso sorting e medio gra di arrotondamento, frammista a limo sabbioso. (Campione C3 da mt 13.50 a mt 14.00)
	12.	1) She < 13.50 14.00							,,,,,,
	16.		05.81.521.03			3 y 3-2	1	5,0	Argilla grigia prevalente.
	19 20 20 20 20 20 20 20 20 20 20 20 20 20		1 0 4 1 2 0 1 A 0		122.5	3 9 8 9	1	8,0	Ghiaia poligenica a basso sorting e buon grado di arrotondamento imballata in una matrice limoso-sabbiosa.
	21 50 0 2 2					(6 £ 1 0	2	2,0	
	23						2	3,3	Ghiaia poligenica a basso sorting e buon grado di arrotondamento prevalente.
	24_				= 2 =		2	5.0	Argilla grigia prevalente.
	26 20 20 20 20 20 20 20 20 20 20 20 20 20						2	!7,0	Ghiaia poligenica a basso sorting e buon grado di arrotondamento imballata in una matrice limoso-sabbiosa.
	28						2	8,0	Limi sabbiosi prevalenti.
1	29_3032300 30032300 30032300 30032300								Ghiaia poligenica a basso sorting e buon grado di arrotondamento prevalente immersa in una matrice sabbiosa.

STRATIGRAFIA - SA9

												<u></u>	SCALA 1:125 Pagina 1/1
			05-132/05 - I					el co	mı	une	e di		Sondaggio: SA9
Local	ita: /	Area	Centro-Est / rice: Perige	Macroare o Sondad	a 35 ai Sr	/ Mocaiana i	Ē.						Quota: p,c, Data:
Coord			nce. i enge	o oondag	gi oi	1;							Redattore: Dott. Geol. Arnaldo Ridolfi
		4	a rotazione a	conserva	zion			-					
øR. mm vr	A Pz	metri	LITOLOGIA	Campioni	RP	VT Prel. %	S.P.T.	N 0	RQI	D %	pro		DESCRIZIONE
101		8	**********					H	H	H	0,	Terreno vegeta	ale.
		1_	2.5. Dy D9. D.					1	Н	Ш	1,		di colore marrone prevalente.
		2_										Ghiaia poligeni arrotondament	ica a basso sorting e medio grado di to prevalente imballata in una matrice sa.
		3_											
		4_									4	Limo argilloso.	
		5_										Ghiaia poligeni arrotondament	ica a basso sorting e basso grado di lo frammista a limi sabbiosi.
		6_	- PULL D						Ħ	9 9 9	5,	Limi argillosi pi	revalenti.
		7_											
		8_				14864605		6.8	83600	08/63	7.	Ghiaia poligen	ica a basso sorting e medio grado di to imballata in una matrice
		9_										limoso-sabbios	io imbaliata in una matrice sa.
		10_											
		11_											
		12_											
		13_											
		14_											
		15_				3.55.51.50.85					15		
		16_									16,		con inclusioni di clasti poligenici ii.
		17_	202012-120-12			100512015					17,	Limo sabbioso	
		18_										Ghiaia poligeni arrotondament	ica a basso sorting e basso grado di lo frammista a limi argillosi.
		19_									19		
		20_	ን ^መ ም ነን ተገኝ ነገር								20,	Limi argillosi.	
		21_										Ghiaia poligeni di arrotondame	ica minuta a basso sorting e medio grado ento frammista a limi sabbiosi.
		22_									22	No orbital Science (Constitution of Science	2000 20 No. No. Oct. 200
		23_										Limi argillosi di	i colore ocra.
		24_											
		25_											
		26_											
		27_											
		28_											
		29_											
101		30									30,		

STRATIGRAFIA - SA10

iforir	mant	n: 1(05-132/05 - I	avori di m	ieroze	onaziona s	ismica n	al cou	mı	ınc	di	Gubbio	SCALA 1:125 Pagina Sondaggio: SA10
			Centro-Est /					ei coi	HIL	лпе	: ui	Gubbio	Quota: p,c,
			rice: Perige	o Sondagg	ji Srl								Data:
-	linate	_				August Songaret							Redattore: Dott. Geol. Arnaldo Ridolfi
		T	rotazione a				S.P.T.	Ιp	OI	D 04	T.		
R A	s Pz	metri batt.	LITOLOGIA	Campioni	RP V	T Prel. %	S.P.T.	N 0		D % 100	r	1	DESCRIZIONE
		8	C			4 2 8 5 7 5 7 1 2 8		100	1 2 2	Ш	0		1307-1001
		• 1_ • 2_ • 3_									Q	Ghiaia polige arrotondame	nica a basso sorting e buon grado di nto prevalente.
		4_ - 5_ 6_	2 A \ 10					7		3000		Limi sabbiosi sub-arrotond	i con rare inclusioni di clasti centimetrici ati poligenici.
		7_								0000	7	Ghiaia polige arrotondame	nica a basso sorting e buon grado di nto prevalente.
		8_						100	Ш		8	Limi sabbiosi sub-arrotond	i con rare inclusioni di clasti centimetrici ati policienici
		9_										Ghiaia polige arrotondame	enica a basso sorting e buon grado di nto prevalente.
		10_						= x = x	100	0228	9		i con rare inclusioni di clasti centimetrici ati poligenici.
		12_ 13_ * 14_									12	arrotondame	enica a basso sorting e buon grado di nto prevalente.
		15 _16_						0.8	200	0859	16		nica a basso sorting e buon grado di nto immersa in una matrice sabbiosa.
		17_									17	Limi argillosi	prevalenti.
		18_ 19_ 20_								8 V 2 S		Ghiaia polige arrotondame	enica a basso sorting e buon grado di nto immersa in una matrice sabbiosa.
		21_ 22_ 23_							3703		23	Ghiaia polige arrotondame	nica a basso sorting e buon grado di nto prevalente.
		24_	arrene a			1002152100		H			24	Limi sabbiosi	i.
		25_ 26_									26	Ghiaia polige arrotondame	enica a basso sorting e buon grado di nto immersa in una matrice sabbiosa.
		27_	200			10000000000000000000000000000000000000					27	Limi sabbiosi	i prevalenti.
		28_									200	Ghiaia fine parrotondame	olígenica a basso sorting e buo grado d nto immersa in una matrice sabbiosa.
		29_ _30	~ X 05 X 3 * X								30	Limi argillosi centimetrici s	di colore marrone con inclusioni di clast sub-arrotondati poligenici.

dott. geol. Luciano Giombini - dott. geol. Milko Mattiacci - dott. geol. Luca Bombardiere Via Grandi n.10, 06012 Città di Castello - Tal. e Fax 075 8522807 - C.F. 90012620549 - P.I. 02389710548

Studio Associato Ge.T.A.

RAPPORTO TECNICO ED INTERPRETAZIONE DATI

Indagini sismiche PRG Gubbio

Nome del sito: RmA5

Indagini eseguite per: dott. geol. Arnaldo Ridolfi

Data acquisizione: novembre 2005

Indagini eseguite: ReMi (profilo verticale Vs e sezione Vs)

SOMMARIO	
Ubicazione indagini	pag. 2
Posizione dello stendimento	pag. 3
Parametri e geometria di acquisizione	pag. 2
Refraction Microtremor. filtro p-f	pag. 3
Refraction Microtremor: curve di dispersione	pag. 3
Refraction Microtremor: profili verticali Vs	pag. 4
Refraction Microtremor: sezione Vs	pag. 5
Vs30 e categoria del suolo di fondazione (DM 14 settembre 2005)	pag. 6
Modello sismostratigrafico	pag. 6

dott, gegt Città di Castello, germaio 2006

Le freccie indicano la direzione delle distanze

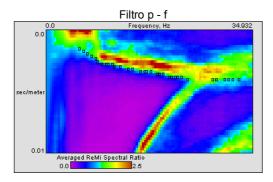
progressive degli stendimenti.

Posizione stendimento

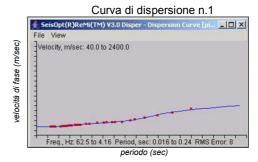
100 metri

stendimento ReMi proiezione profilo verticale ReMi

Parametri e geometria di acquisizione


Refraction Microtremor lunghezza stendimento: 115 m distanza intergeofonica: 5 metri numero totale geofoni: profondità di indagine: $\approx 70 \; metri \; (profilo \; verticale)$ ≈ 30 metri (sezione orizzontale) correzione topografica: non necessaria

pag. 2


2005

GETA GETA GEOLOGIA TERRITORIA AMBIENTE

Refraction Microtremor. elaborazione e risultati indagine

Lo spettro p-f è risultato di buona qualità. Il rumore ambientale ha fornito un intervallo di frequenze continuo. I punti che costituiscono la curva di dispersione sono stati individuati delimitando inferiormente una fascia caratterizzata da carattere dispersivo, coerenza di fase e potenza significativa.

Curva di dispersione n.2

SeisOpt(R)ReMi(TM) V3.0 Disper - Dispersion Curve [pl.] X

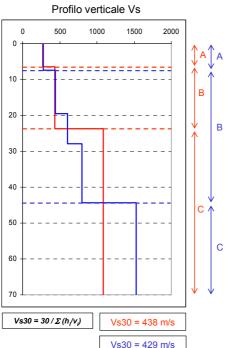
File View

Velocity, m/sec: 40.0 to 2400.0

Freq., Hz. 62.5 to 4.16 Period, sec: 0.016 to 0.24 RMS Error: 9

periodo (sec)

Da due modelli stratigrafici (mostrati nella pagina successiva) sono state ricavate analiticamente due curve di dispersione. Le due curve di dispersione analitiche (linee blu) risultano molto simili e sono caratterizzate da errori quadratici medi molto ridotti rispetto alla curva di dispersione ricavata tramite lo spettro p-f.


pag. 3

2005

GETA GEOLOGIA TERRITORIO

STUDIO

Refraction Microtremor: elaborazione e risultati indagine

I due modelli stratigrafici da cui sono state ricavate le curve di dispersione analitiche sono rappresentati dai profili verticali Vs rosso, e blu. I due profili individuano le stesse unità stratigrafiche, denominate A, B e C.

L'estensione di queste unità risulta variabile nei due profili. La profondità dell'unità C (interpretata come basamento litoide) rappresenta la differenza stratigrafica più importante.

I due modelli stratigrafici, che forniscono comunque delle curve di dispersione analitiche "buone", sono stati elaborati per evidenziare il grado di approssimazione nella determinazione della stratigrafia.

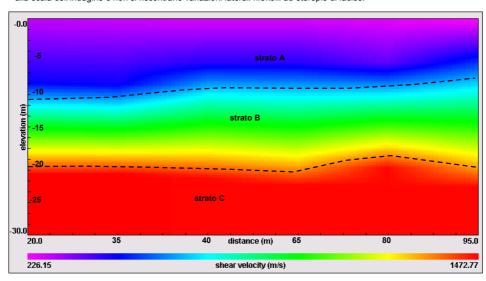
Si sottolinea inoltre che i profili verticali mediano le geometrie stratigrafiche di una porzione di sottosuolo molto ampia al di sotto dello stendimento di acquisizione. Pertanto, le profondità sono quelle medie lungo tutto il profilo di acquisizione.

<u>L'unità A</u> è riconducibile a coperture superficiali mediamente consistenti e/o addensate con Vs pari a circa 275 m/sec. La base è posta a circa 8 metri di profondità.

<u>L'unità B</u> è caratterizzata da Vs comprese fra 430 e 790 m/sec. Le velocità sismiche indicano un grado elevato di addensamento e/o consistenza. Nel profilo blu si osserva un incremento di velocità in profondità probabilmente interpretabile come l'effetto della compattazione.

<u>L'unità C</u> mostra delle Vs comprese fra 1085 e 1585 m/sec, compatibili con la presenza del basamento litoide o alternativamente di litotipi ghiaiosi cementati. La profondità del tetto varia da 23 a 45 secondo il modello considerato.

pag. 4


RELAZIONE STUDI DI MICROZONAZIONE SISMICA

Refraction Microtremor. elaborazione e risultati indagine (sezione Vs)

Il profilo verticale ha individuato tre intervalli maggiori entro 70 metri di profondità. La sezione orizzontale cerca di individuare le eventuali variazioni laterali di questi intervalli per uno spessore di indagine significativo in ambito geotecnico. Il profilo orizzontale è stato ottenuto correlando sei sotto-profili verticali elaborati dai seguenti gruppi di geofoni: 1-9, 4-12, 7-15, 10-18, 13-21, 16-24. Per l'elaborazione dei sei sotto-profili è stato utilizzato il modello di velocità del profilo verticale rosso. Utilizzando il profilo blu i contatti fra le unità traslano in profondità pur mantenendo approssimativamente lo stesso andamento (il tetto del basamento si approfondisce di circa 20 metri).

La sezione orizzontale Vs individua le tre unità già evidenziate nei profili verticali. I contatti non mostrano irregolarità significative alla scala dell'indagine e non si riscontrano variazioni laterali riferibili ad eteropie di facies.

pag. 5

2005

2005

Vs30 e categoria del suolo di fondazione (DM 14/09/2005)

Dal profilo verticale delle velocità delle onde trasversali si calcola un parametro **Vs30 compreso fra 438 e 429 m/sec**. Tali valori individuano la **categoria di suolo di fondazione B**: depositi di sabbie e ghiaie molto addensate o di argille molto consistenti caratterizzati da valori di Vs30 compresi fra 360 e 800 m/sec. Il fattore moltiplicativo S, che tiene conto dell'amplificazione locale stratigrafica, risulta dunque pari a 1.25. L'accelerazione massima al suolo è pari a: $a_g \cdot S$ dove a_o è l'accelerazione massima attesa per suoli di di categoria A (*i.e.* basamento litoide e suoli assimilabili).

Modello sismostratigrafico

Il profilo verticale delle Vs entro la profondità investigata (i.e. 70 metri) individua i tre intervalli brevemente descritti di seguito con le profondità medie riferibili a tutta la porzione di terreno investigata.

Unità A: strato superficiale con velocità pari a circa 275 m/sec riferibile a litotipi caratterizzati da un grado di consistenza e/o addensamento medio. La base ha una profondità media di circa 8 metri.

Unità B: intervallo intermedio caratterizzato da un notevole incremento di Vs (430 - 790 m/sec). E' riferibile a litotipi molto addensati e/o consistenti. Uno dei modelli elaborati evidenzia un incremento costante di velocità in profondità. La parte inferiore, caratterizzata da velocità molto alte, è riferibili ai litotipi di transizione con l'unità sottostante (basamento litoide). La base è posta a profondità variabili da 23 a 45 metri secondo i modelli.

Unità C: intervallo profondo caratterizzato da velocità S comprese fra 1085 e 1583 m/sec. Tali valori si accordano con il basamento litoide, ma non si possono tuttavia escludere la presenza di litotipi clastici parzialmente cementati.

La sezione Vs raggiunge la profondità di indagine di circa 30 metri e mostra le tre unità evidenziate nei profili verticali. Non si osservano irregolarità nei contatti o eteropie di facies. Gli spessori si mantengono pressochè costanti alla scala dell'indagine.

Tenuto conto dell'alta velocità delle onde S, si ritiene che il rischio di fenomeni di liquefazione nel caso di terreni immersi in falda con componente granulare sia trascurabile.

dott. geol. Luciano Giombini

dott. Seci Milko Mattiacci

dott. geot Luce Bambardiere

Città di Castello, germaio 2006

pag. 6

31.7.4 Documentazione fotografica Sondaggio SA8 cassette da 1 a 6

Sondaggio SA9 cassette da 1 a 6

Sondaggio SA10 cassette da 1 a 6

SCHEDA RIASSUNTIVA DI LABORATORIO

DATI GENERALI CAMPIONE

Committente	PERIGEO SONDAGGI S.r.l.
Proprietà/Cantiere	P.R.G. Comune di Gubbio
Località	Area Centro-Est - GUBBIO - PG
Data arrivo	12/01/2006

CARATTERISTICHE DI PERFORAZIONE E CAMPIONAMENTO

Sondaggio n°	SA8
Campione n°	CII
Profondità campionamento	13,50 - 14,00 m p.c.
Diametro sondaggio	101 mm
Tipo di sondaggio	Carotaggio continuo
Data sondaggio	10/01/2006
Campionamento con Shelby	X
Campionamento con carotiere semplice	38
Campionamento con carotiere doppio	
Campionamento mediante escavatore	
Campionamento a mano	
Dimensioni campione estruso	\$80 x 240 mm
Classe di qualità (BS 5930:1981)	4

IDENTIFICAZIONE VISIVA

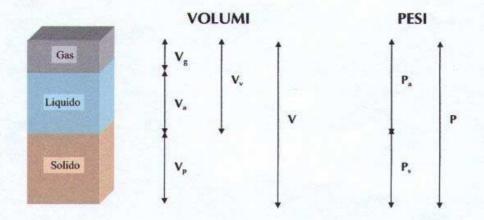
Data apertura	23-01-2006
Consistenza	Bassa
Struttura	Eterogenea
Colore	Grigio scuro-nerastro, con nucleo avana
Descrizione	Argille limose debolmente sabbiose

PROVE ESEGUITE SUL CAMPIONE

Contenuto in acqua	X
Peso di volume	X
Peso dei costituenti solidi	X
Caratteristiche fisiche	X
Setacciatura	
Aerometria	X
Limiti di Atterberg	X
Prova E.L.L.	
Prova di taglio diretto	
Parametri residui	
Prova edometrica	
Prova di permeabilità	

PARTICOLARE FOTOGRAFICO

SCHEDA PROPRIETA' INDICI TERRENO


Riferimento: PERIGEO/P.R.G. Gubbio Località : Area Centro-Est - GUBBIO

Data: Gennaio 2006

Sondaggio: SA8
Campione: CI1
Profondità: 13,50 – 14,00 m p.c.

Litologia: Argille limose di colore grigio-nerastro, debolmente sabbiose

	P	arametri definiti in laboratorio	
Peso (g)	Volume (cm³)	Peso costituenti solidi G, (g/cm3)	Umidità naturale w _n (%)
72,94	39,39	2,65	38,4

Peso dei solidi P s	$P_s = P/(1+W)$	52,70
Peso dell'acqua P a	$P_a = W P_s$	20,24
Volume dei solidi V s	$V_s = P_s/G_s$	19,89
Volume dell'acqua V a	$V_a = P_a/\gamma_a$	20,24
Volume dei vuoti V ,	$V_v = V - V_s$	19,50
Peso di volume y	$\gamma = P/V$	1,85

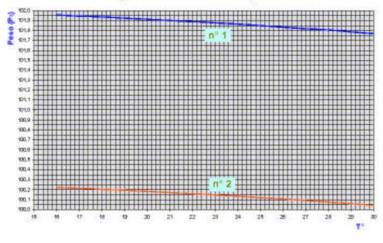
Porosità n	$n = V_{\nu}/V$	0,50
Indice dei vuoti e	e = V _v /V _s	0,9806
Grado di saturazione S,%	S, = Va/V, 100	103,77
Peso di volume saturo y sat	$\gamma_{sat} = \gamma_a n + G_s(1-n)$	1,83
	$\gamma_d = G_s(1-n)$	1,34

Dott. Geol. FABIO MAZZEO - Laboratorio Geotecnico Terre - Strada degli Ornari 2/E 06078 PONTE VALLECEPPI (PG)

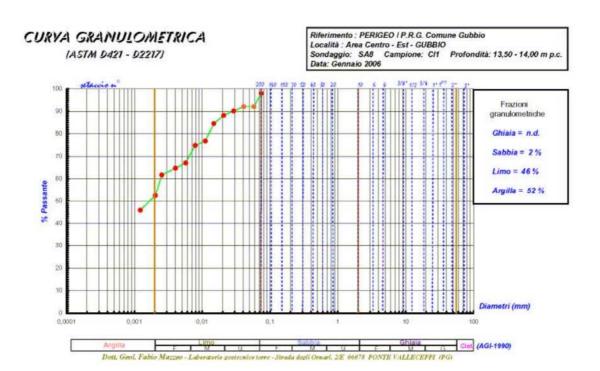
DEFINIZIONE PESO DEI COSTITUENTI SOLIDI G. (ASTM D 854)

Riferimento: PERIGEO/P.R.G. Gubbio Località:Area Centro-Est - GUBBIO Data: Gennaio 2006 Sondaggio: SA8
Campione: CII
Profondità: 13,50-14,00 m p.c.

Litologia: Argille limose di colore grigio-nerastro, debolmente sabbiose


Picnometri da 50 cm³

Picnometro n°	1	2
Peso picnometro + tappo P ₁ (g)	45,72	45,92
Peso picnometro + tappo + materiale P ₂ (g)	60,72	60,92
Peso materiale P = P ₂ - P ₁ (g)	15	15
Peso Picnometro + tappo + acqua distillata alla T° = 18,5°/19,2° P ₃ (g)	101,93	100,19
Peso picnometro + tappo + acqua distillata + materiale alla T° = 18,5°/19,2° P4 (g)	111,26	109,54
Peso specifico dell'acqua distillata alla T° = 18,5°/19,2°	0,9985	0,99836
Peso Specifico	2,64153	2,65051


 $G_{s (20^{\circ})} = \frac{P}{P + P_3 - P_4} \gamma_{w (T^{\circ})}$

Valore medio G_s = 2.65 gr/cm³

Diagramma di taratura dei picnometri

Dott. Geol. FABIO MAZZEO - Laboratorio Geotecnico Terre - Strada degli Ornari 2/E 06078 PONTE VALLECEPPI (PG)

DETERMINAZIONE LIMITI DI ATTERBERG

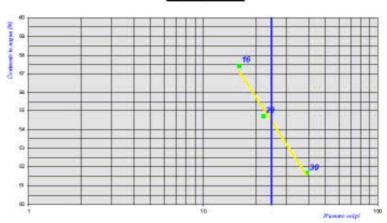
LIMITI LIQUIDO E PLASTICO (CNR-UNI 10014)

Riferimento: PERIGEO/P.R.G. Gubbio Località: Area Centro -Est - GUBBIO

Data: Gennaio 2006

Sondaggio : Campione : Profondità :

CII 13,50 – 14,00 m p.c.


Litologia: Argille limose di colore grigio-nerastro, debolmente sabbiose

LIMITE LIQUIDO

WI

1 - Contenitore nº	69	52	50
2 - Tara Contenitore (g)	23,23	24,16	24,64
3 - Peso lordo umído (g)	47,11	56,22	71,26
4 - Peso netto umido (g) (3-2)	23,88	32,06	46,62
5 - Peso lordo secco(g)	38,97	44,88	54,25
6 - Peso netto secco (g) (5-2)	15,74	20,72	29,61
7 - Contenuto acqua (g) (4-6)	8,14	11,34	17,01
8 - Contenuto acqua (%) (7/6x100)	51,72	54,73	57,45
9 - Numero colpi	39	22	16

$W_L = 54,5\%$

LIMITE PLASTICO

W,

WN

10 - Contenitore nº	100	106	64	50
11 - Tara Contenitore (g)	8,83	8,79	24,55	24,64
12 -Peso lordo (g)	21,17	17,68	76,02	99,16
13 - Peso netto (g) (12-11)	12,34	8,89	51,47	74,52
14 - Peso lordo secco (g)	18,54	15,78	61,76	78,47
15 - Peso netto secco (g) (14-II)	9,71	6,99	37,21	53,83
16 - Contenuto acqua (g) (13-15)	2,63	1,90	14,26	20,69
17 - Contenuto acqua (%) (16/15x100)	27,09	27,18	38,32	38,44
18 - Valore medio (g) (Wp) (Wa)	27,1		38,4	

$W_{I(20)}$	$W_{p(0)}$	I_p	I_o
54,50	27,10	27,40	0,59

Classificazione dalla Carta di Casagrande: CH - Argille inorganiche di alta plasticità

Dott. Geol. FABIO MAZZEO - Laboratorio Geotecnico Terre - Strada degli Ornari 2/E 06078 PONTE VALLECEPPI (PG)

31.7.5 Cartografia

Si riportano di seguito gli allegati cartografici essenziali ai fini della valutazione del rischio sisimico.

Per una immediata comprensione degli stessi si è pensato di adottare il seguente ordine:

- legenda carta geologica;
- carta geologica su C.T.R. a scala 1:5.000;
- profili geologici e di suscettibilità sismica locale a scala 1:2.000;
- legenda carta geomorfologica;
- carta geomorfologica su C.T.R. a scala 1:5.000;
- legenda carta litotecnica;
- carta litotecnica su C.T.R. a scala 1:5.000;
- profili litotecnici e di suscettibilità sismica locale a scala 1:2.000;
- legenda carta delle aree suscettibili di amplificazione sismica;
- carta delle aree suscettibili di amplificazione sismica su C.T.R. a scala 1:5.000.

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA GEOLOGICA

LEGENDA

а

ALLUVIONI ATTUALI - RECENTI

Le alluvioni si trovano ancora in rapporto con la dinamica dell'alveo attuale. Limi sabbiosi e limi argillosi con inglobati depositi lentiformi e nastrifomi di ghiaie e ghiaie sabbiose. Ghiaie sciolte o debolmente cementate, talora a stratificazione incrociata, con intercalazioni di lenti di sabbie bruno-giallastre e di argille grigie.

Sovrassegni e sigle per:
Ghiaie e ghiaie con sabbia - pallinato **gs**Sabbie e sabbie limose - puntinato **sl**Limi, limi argillosi e argille - tratteggiato **la**

an

ALLUVIONI ANTICHE

Le alluvioni non hanno più alcun rapporto con la dinamica dell'alveo attuale. Limi sabbiosi e limi argillosi con inglobati depositi lentiformi e nastrifomi di ghiaie e ghiaie sabbiose. Ghiaie sciolte o debolmente cementate, talora a stratificazione incrociata, con intercalazioni di lenti di sabbie bruno-giallastre e di argille grigie.

Sovrassegni e sigle per: Ghiaie e ghiaie con sabbia - pallinato **gs** Sabbie e sabbie limose - puntinato **sl** Limi, limi argillosi e argille - tratteggiato **la**

Traccia di sezione

INDAGINI GEOGNOSTICHE

Prove penetrometriche dinamiche (DPHS)

Prove penetrometriche statiche (CPT)

Sondaggi meccanici a conservazione di nucleo

Sismica a rifrazione

Refraction Microtremor (ReMi)

INDAGINI GEOGNOSTICHE DI RIFERIMENTO

Prove penetrometriche dinamiche (DPHS)

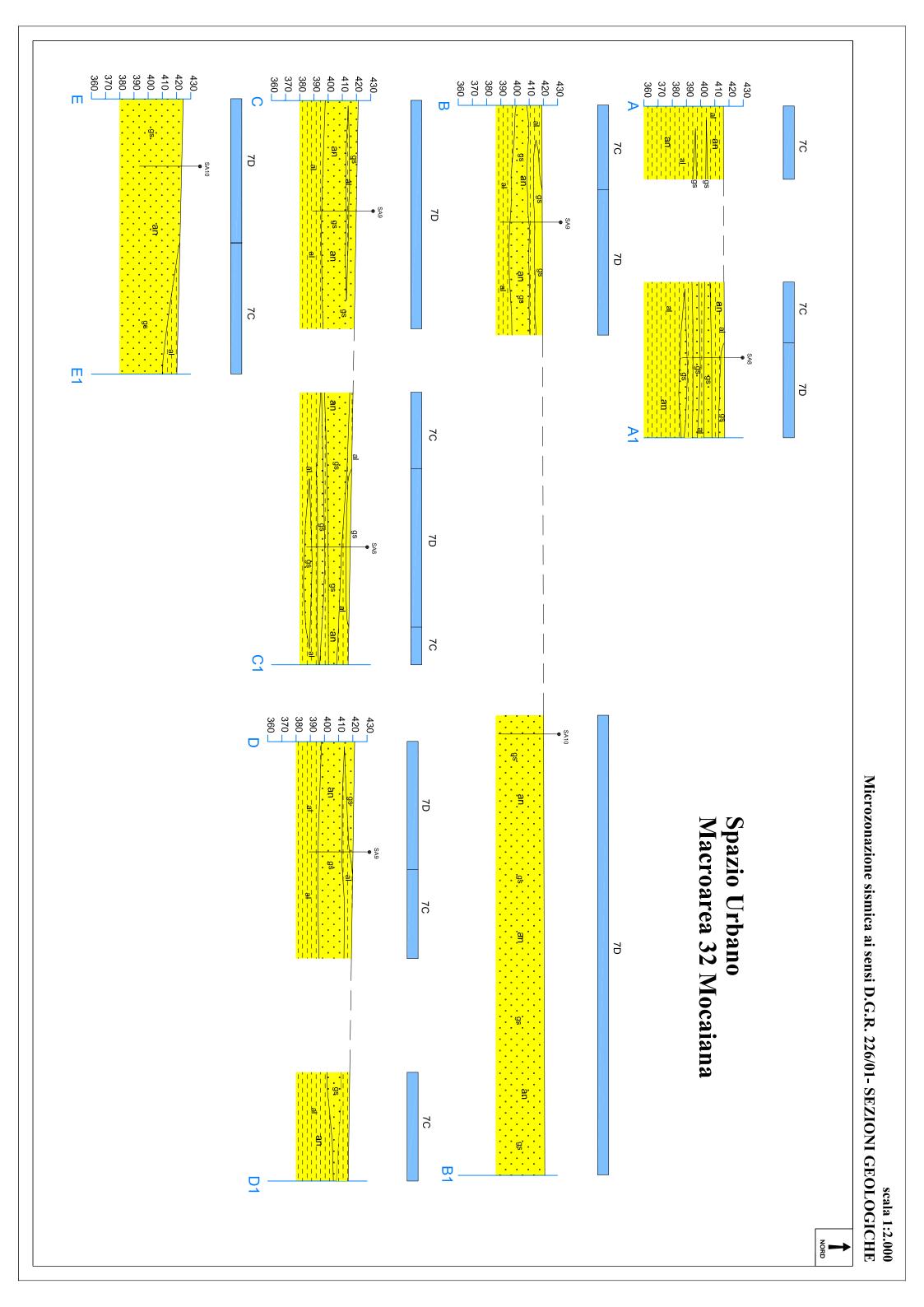
Prove penetrometriche statiche (CPT)

Sondaggi meccanici a conservazione di nucleo

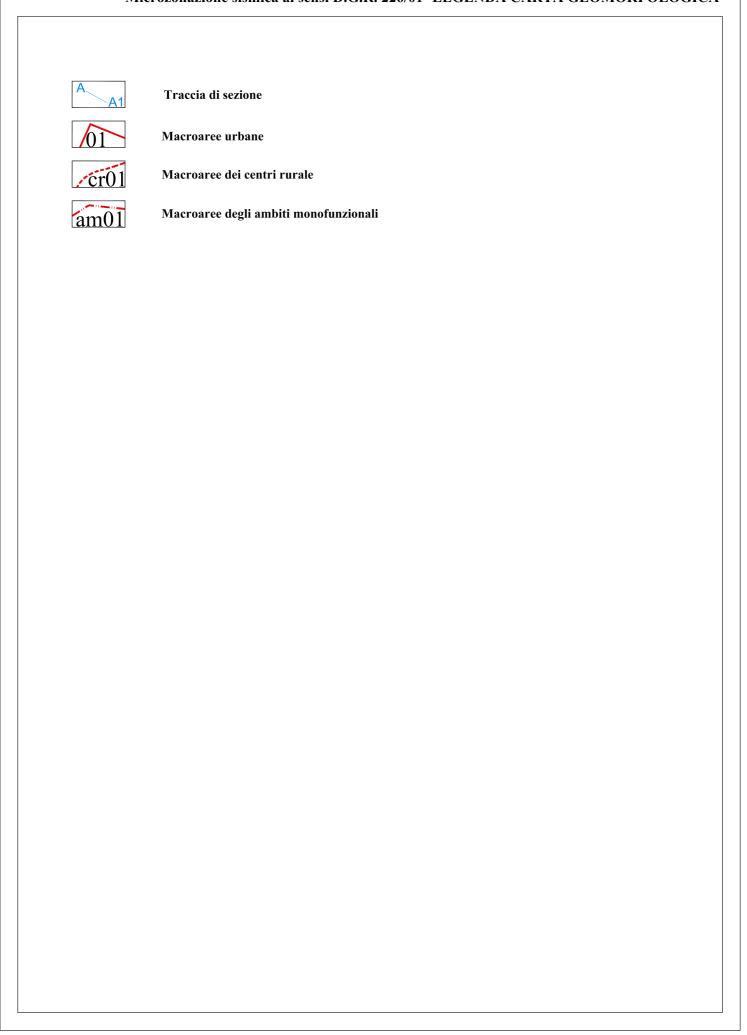
Sondaggi meccanici a distruzione di nucleo

Scavo

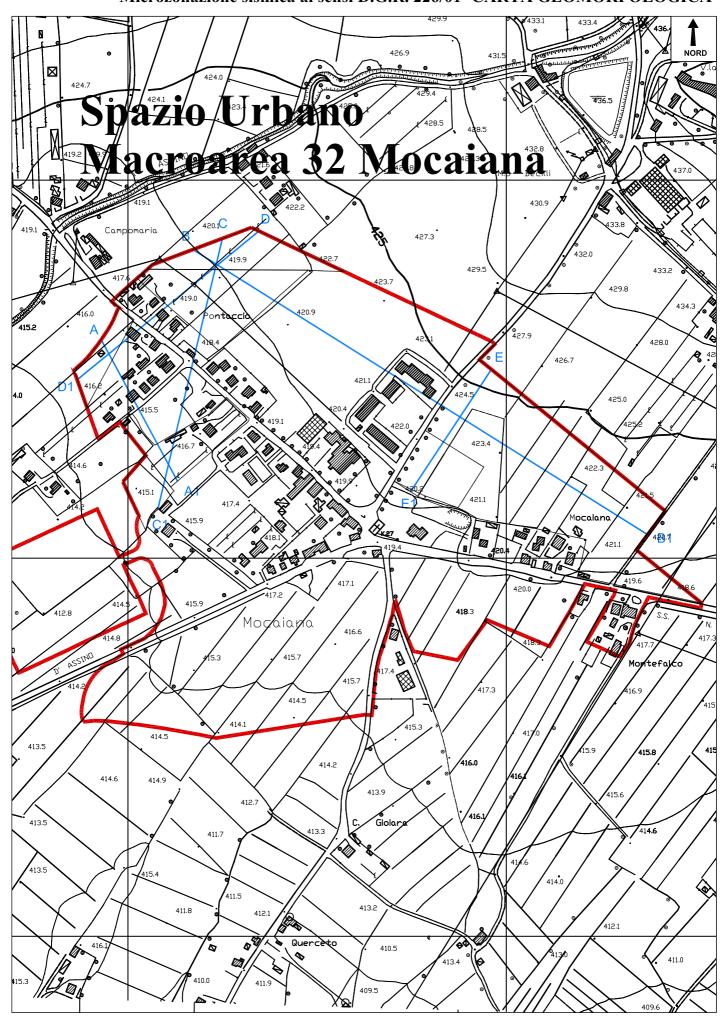

Macroaree urbane



Macroaree dei centri rurale



scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOLOGICA



Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA GEOMORFOLOGICA

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOMORFOLOGICA

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA LITOTECNICA

COPERTURA E SUBSTRATO ALTERATO

L5

Materiali granulari sciolti o poco addensati:

L5a - a prevalenza ciottolosa (pallinato gs)

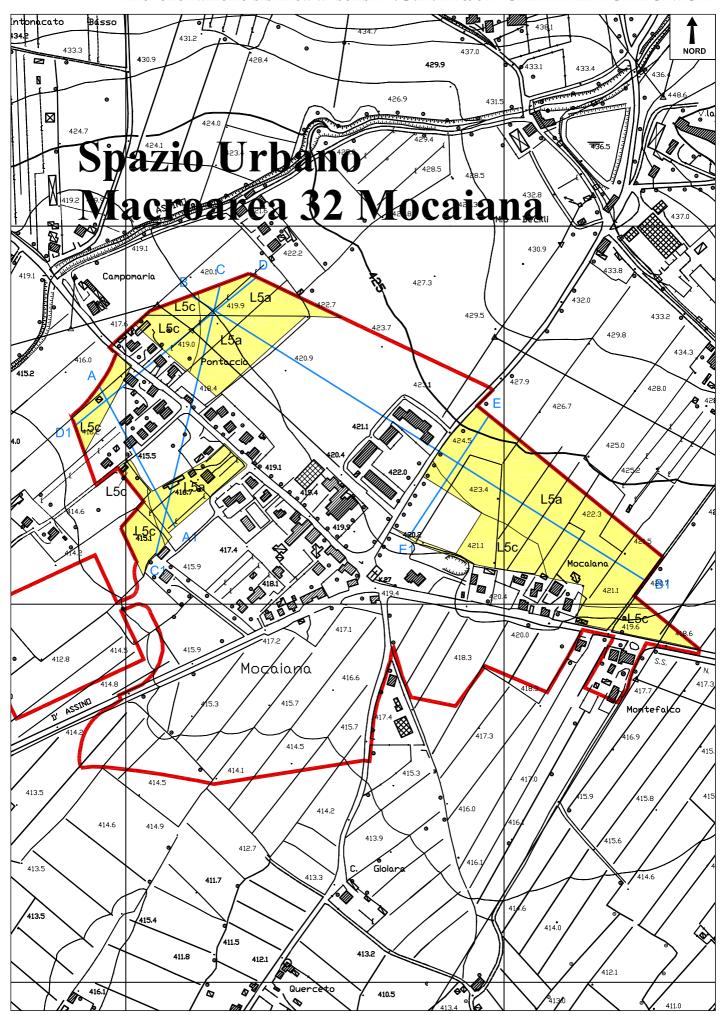
L5b - a prevalenza sabbiosa (puntinato sl)

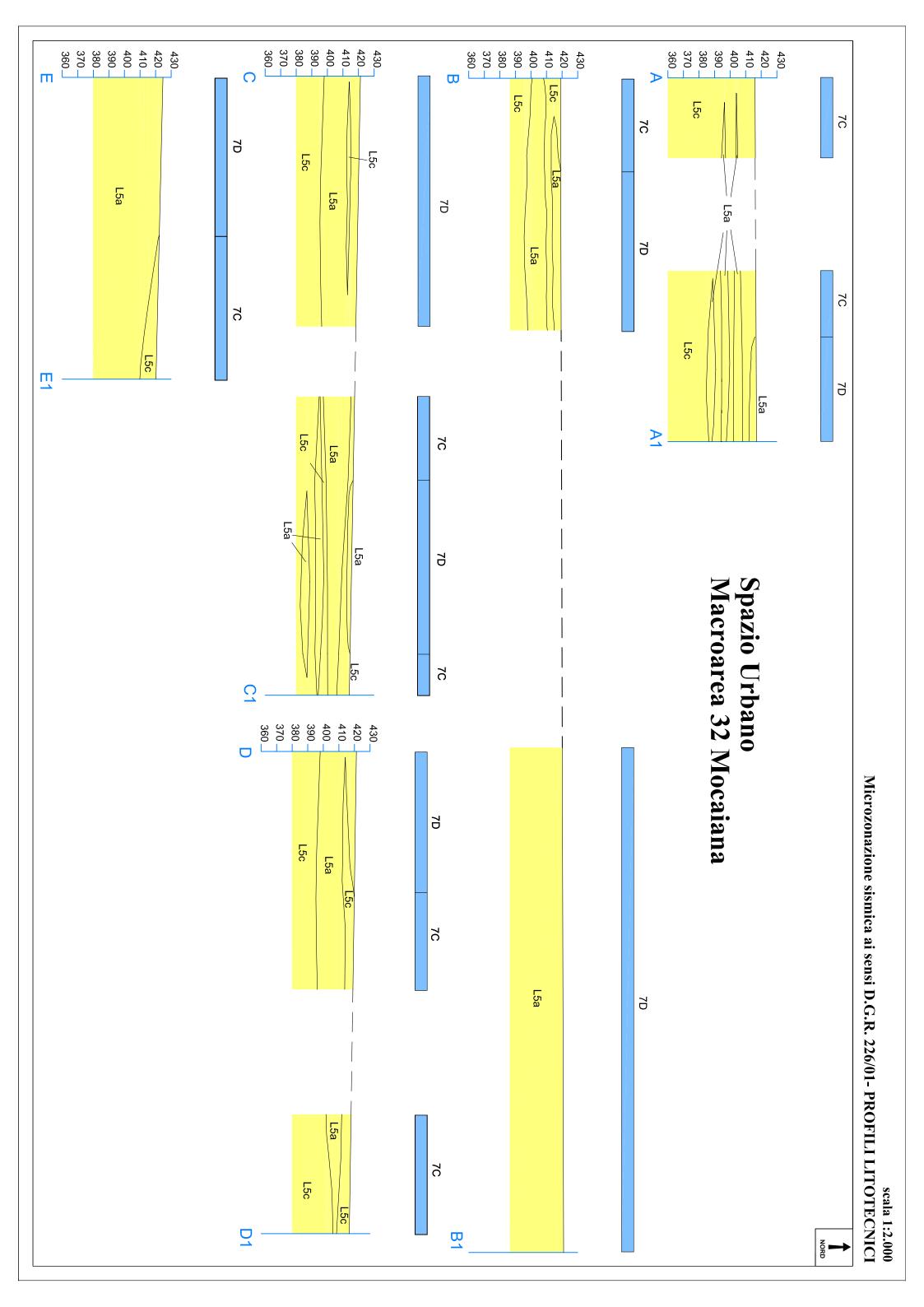
L5c - a prevalenza limo-argillosa/argillo-limosa (tratteggiato la)

L6

Materiali coesivi normalconsolidati

Traccia di sezione


Macroaree urbane



Macroaree dei centri rurale

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA LITOTECNICA

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA DELLE ZONE SUSCETTIBILI DI AMPLIFICAZIONE SISMICA O INSTABILITA' DINAMICHE LOCALI

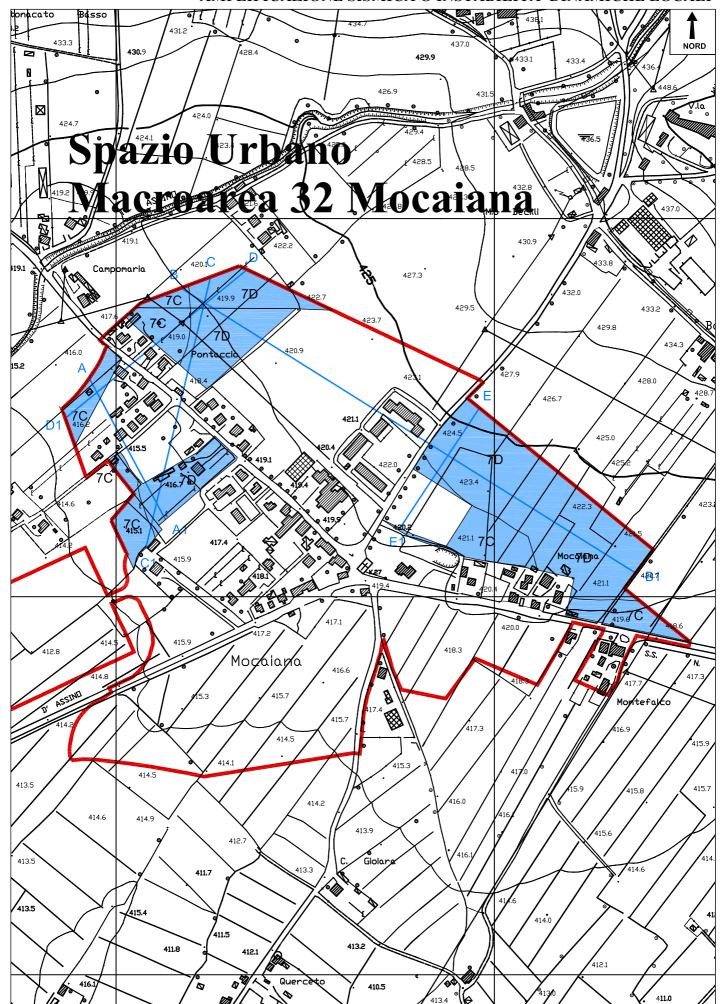
TIPOLOGIA DELLE SITUAZIONI

RIFERIMENTO NELLE CARTE DI BASE

Zona di fondovalle:

detrito=A travertino=B fluvio lacustre limoso argilloso e alluvioni limoso argillose=C fluvio lacustre sabbioso ghaioso e alluvioni sabbioso ghiaiose=D L5, L6

Traccia di sezione



Macroaree urbane

Macroaree dei centri rurale

32 RELAZIONE SPAZIO URBANO MACROAREA 33 LORETO

(Dott. Geol. Arnaldo Ridolfi)

32.1 Caratteristiche geologiche

La macroarea in oggetto è ubicata a ridosso della catena dei monti di Gubbio, costituita da una semibrachianticlinale orientata NW – SE, il cui fianco sud – ovest è stato ribassato da una serie di faglie dirette listriche che hanno originato il graben attualmente occupato dalla pianura eugubina.

La zona considerata è sita a valle dell'area dove passano queste faglie dirette, il cui rigetto complessivo si aggira intorno a 1.000 metri.

Queste dislocazioni sono il risultato di un campo di stress regionale distensivo, iniziato nel Pliocene, e probabilmente ancora attivo come dimostrano le microzonazioni sismiche effettuate a seguito degli ultimi eventi tellurici.

32.1.1 Geometria delle formazioni

Il detrito di falda è presente nell'area esaminata con andamento cuneiforme e ispessimento verso il basso tipico delle conoidi di versante.

32.1.2 Tipo di contatto, spessore e sua variabilità

Il contatto tra le formazioni è sempre di natura stratigrafica. Lo spessore delle formazioni varia da pochi metri fino a raggiungere la potenza di decine di metri.

32.2 Caratteristiche geomorfologiche

Dal punto di vista geomorfologico non si rilevano particolari fenomenologie. I terreni sono da considerarsi stabili dal punto di vista gravitativo. Non si rilevano nelle aree in oggetto fenomeni di movimento di terreno superficiale sia in atto che potenziali.

32.3 Schema idrogeologico generale e permeabilità relative dei terreni e delle rocce

I terreni presenti possono essere considerati abbastanza permeabili e le acque meteoriche vengono direttamente assorbite nel terreno. L'idrografia superficiale è poco rappresentata. Più a valle la rete idrica è costituita da piccoli ruscelli che drenano le acque superficiali verso il collettore principale rappresentato dal Torrente Assino che scorre più a sud rispetto alla macroarea in oggetto. Tali fossati e ruscelli, drenano le acque soprattutto in corrispondenza di zone dove per variazioni di permeabilità si ha emersione delle falde freatiche più superficiali. Infatti gli acquiferi della parte alta della pianura eugubina, confinati all'interno dei livelli conglomeratici, quando raggiungono la parte più bassa della conca, emergono in superficie per la presenza di tali livelli argillosi a bassissima permeabilità.

La falda idrica sottostante si trova ad una profondità compresa maggiore ai 40 metri ca. Gli acquiferi sono costituiti dai terreni ghiaiosi e ghiaioso sabbiosi permeabili per porosità. L'accumulo delle acque è garantito dalla presenza del complesso alluvionale argilloso e argilloso limoso. L'area di ricarica degli acquiferi è situata nella parte pedemontana e avviene per infiltrazione diretta o ricarica laterale operata dalle formazioni calcaree presenti a monte. La discarica avviene verso Sud, sia attraverso il collettore principale rappresentato dal torrente Assino, sia artificialmente, ad opera dell'azione antropica, mediante l'emungimento di pozzi presenti a valle.

32.4 Caratteristiche litotecniche

Essendo il litotipo rappresentativo costituito da detrito di falda non si assiste a variabilità laterale nell'area in oggetto.

In profondità invece si ha il passaggio con la formazione Marnoso arenacea (FMA1)

32.4.1 Unità litotecniche della copertura

Le unità litotecniche fanno riferimento alla classe L5 e nello specifico L5a.

32.4.2 Unità litotecniche del substrato

È costituito dalla Formazione Marnoso – arenacea caratterizzata da alternanze di marne arenarie e calcareniti con un rapporto A/P variabile da 1:5 a 1:10 e attribuibile al membro FMA1 basale (L2B3).

32.5 Indagini geognostiche eseguite

Sono state effettuate n.2 indagini penetrometriche fino alla profondità di 10 m dal p.c.e indicate in carta con le sigle PA1 e PA2.

32.6 Cartografia di sintesi

32.6.1 Carta delle zone suscettibili di amplificazione o instabilità dinamiche locali

L'area in oggetto è classificabile come fascia pedemontana con presenza di detrito di falda.

32.6.1.1 Zone 8

Sono rappresentate da tutte le aree dove si rileva la presenza di detrito di falda.

32.6.2 Carta del rischio sismico: classi di amplificazione sismica locale

Le classi di rischio relative ai terreni microzonati sono indicate nell'elaborato Es.7 "Carta del rischio sismico" nelle seguenti tavole: Foglio 03 (11 III).

32.6.2.1 Classe D

Si è attribuita questa classe in virtù del fatto che il detrito di falda ha uno spessore compreso tra i 20 m e i 30 m.

32.6.3 Diagrafie indagini geognostiche

Prove penetrometriche a cura del Dott. Geol. Arnaldo Ridolfi

PERIGEO SONDAGGI

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA TARFLLE VALORI DI RESISTENZA

n° PA1

cantiere : Com			crozonazione sism mune di Gubbio ea centro-est / Ma				dataquotaprof.pagir	a inizio : Pia falda : Fa	/11/2005 ano campag lda non rilev		
Pro	of.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.(r	n)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta
- 00,0	0,30	2	15,5		1	5,40 - 5	.70	8	41,0		5
- 08,0	0,60	2	15,5		1		.00	8	41.0		5
0,60 -	0,90	4	27,5		2		.30	10	51,3		
,90 -	1,20	4	27,5		2		.60	14	71,8		5
,20 -	1,50	4	27,5	***	2		,90	15	71,0		
,50 -	1,80	4	27,5	****	2		.20	17	80,4		6
.80 -	2,10	3	20,6	****	2		.50	14	66.3		6
2,10 -	2,40	3 4	24,7		3		.80	19	89,9		
2,40 -	2,70	5	30,8		3		10	13	61,5	****	6
.70 -	3,00	6	37,0	500000	3	12/1/27/27	40	16	70,3		0
,00 -	3,30	11	67,9		3	2000 0000000000000000000000000000000000	70	17	74,7		7
.30 -	3,60	9	55,5	1 2222	3		.00	11	48.3	****	7
,60 -	3,90	9	50,4	****	4		30	16	70.3		7
,90 -	4,20	10	56,0		4	17 CONTROL 18 CONTROL	60	15	65,9	****	7
,20 -	4,50	9	50,4	11000000	4		90	20	81,9	****	/
,50 -	4,80	9	50,4		4	9,90 - 10,		21	86,0		8
.80 -	5,10	9	50,4	277,000	4	10,20 - 10,		23		****	8
10 -	5,40	13	66,7		5	10,20-10,	50	20	94,2	****	8

Software by: Dr.D.MERLIN - 0425/840820

⁻ PENETROMETRO DINAMICO tipo : TG 73-100/200

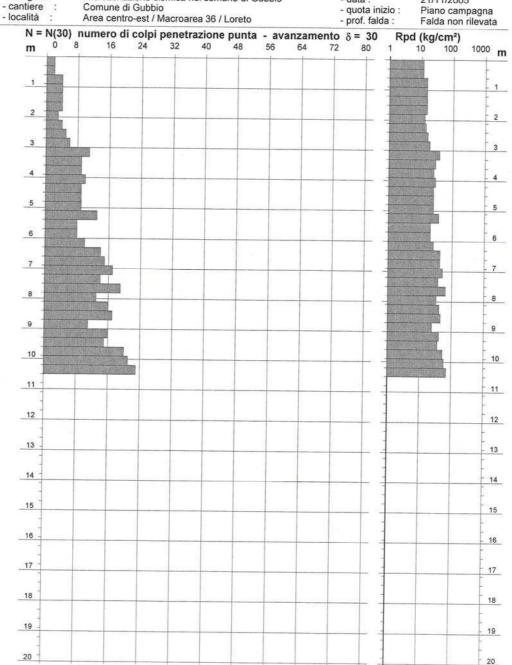
⁻ M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - A (area punta)= 20,43 cm² - D(diam. punta)= 51,00 mm - Numero Colpi Punta N = N(30) [δ = 30 cm] - Uso rivestimento / fanghi iniezione : SI

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° PA1


- indagine : Microzonazione sismica nel comune di Gubbio

- data :

- quota inizio :

Scala 1: 100

21/11/2005 Piano campagna

- PENETROMETRO DINAMICO tipo : TG 73-100/200

- M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - A (area punta)= 20,43 cm² - D(diam. punta)= 51,00 mm - Numero Colpi Punta N = N(30) [δ = 30 cm] - Uso rivestimento / fanghi iniezione : SI

- Uso rivestimento / fanghi iniezione : SI

Software by: Dr.D.MERLIN - 0425/840820

P.IVA 02062020546

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PA1

13	indagine:
-7	muayine .
	continue

- note :

Microzonazione sismica nel comune di Gubbio

Comune di Gubbio - località

Area centro-est / Macroarea 36 / Loreto

- data : - quota inizio: 21/11/2005 Piano campagna

- prof. falda : - pagina :

Falda non rilevata

n°	Profondità (m)		PARAMETRO		ELA	BORA	ZIONE ST	ATIST	ICA		VCA	β	Nspt
				М	min	Max	½(M+min)	s	M-s	M+s			
1	0,00	3,00	N Rpd	3,8 25,4	2 16	6 37	2,9 20,4	1,2 6,7	2,6 18,7	5,0 32,1	4 27	1,14	5
2	3,00	6,30	N Rpd	9,5 52,8	8 41	13 68	8,8 46,9	1,4 8,6	8,1 44,2	11,0 61,4	10 56	1,14	11
3	6,30	10,50	N Rpd	16,5 73,7	11 48	23 94	13,8 61,0	3,3 12,1	13,2 61,7	19,8 85.8	16 72	1,14	18

M: valore medio

valore medio min: valore minimo Max: valore massimo numero Colpi Punta prova penetrometrica dinamica (avanzamento $\delta = 30\,$ cm) Rpd: resistenza dinamica alla punta (kg/cm²) Nspt: numero colpi prova SPT (avanzamento $\delta = 30\,$ cm) N:

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m)	LITOLOGIA	Nspt	١	IATUF	RA GR	ANULA	N/	NATURA COESIVA			
				DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е
1 2 3	0.00 3.00 3.00 6.30 6.30 10.50	Argilla Limosa Limo Argilloso deb.Sabbioso Limo sabbioso con inclusi	11	18.3 36.5 47.0	28.0 30.3 32.4	230 276 330	1.88 1.94 1.98	1.41 1.51 1.57	0.31 0.69 1.13	1.83 1.91 2.00	39 32 26	1.06 0.867 0.708

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa $g'(^\circ)$ = angolo di attrito efficace $g'(^\circ)$ = modulo di deformazione drenato $g'(^\circ)$ = contenuto d'acqua $g'(^\circ)$ = modulo di deformazione drenato $g'(^\circ)$ = modulo di deformazione drenato $g'(^\circ)$ = contenuto d'acqua $g'(^\circ)$ = peso di volume saturo e secco (rispettivamente) del terreno

Software by: Dr.D.MERLIN - 0425/840820

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

n° PA2

_	indagine cantiere località note :	: Con	rozonazione sisr nune di Gubbio a centro-est / Ma			a inizio : Pia falda : Fa	1/11/2005 Piano campagna Pialda non rilevata			
Pro	of.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.(m)	N(colpi p)	Rpd(kg/cm²	N(colpi r)	asta
0,00 -		1	7,7		1	5.40 - 5.70		der Town	, , ,	
0,30 -	0,60	2	15,5		1	2000 00000 00000 0000	14	71,8		5
0,60 -	0.90	3	20,6		1	5,70 - 6,00	8	41,0		5
0.90 -	1,20	4	27,5		2	6,00 - 6,30	14	71,8		5
1,20 -	1.50				2	6,30 - 6,60	13	66,7		5
1,50 -	1,80	3 3 3	20,6		2	6,60 - 6,90	15	71.0		6
1,80 -	2,10	3	20,6		2	6,90 - 7,20	18	85,2	1987	6
2,10 -	2,40		20,6		2	7,20 - 7,50	16	75,7	910124	
2.40 -		7	43,2		3	7,50 - 7.80	20	94,6		6
	2,70	10	61,7	-	3	7,80 - 8,10	15	71,0		6
2,70 -	3,00	8	49,3		3	8,10 - 8,40	14			6
3,00 -	3,30	6	37,0		3	8,40 - 8,70	19	61,5		7
3,30 -	3,60	4	24,7	****	3	8,70 - 9.00	17	83,4		7
3,60 -	3,90	3	16,8	-	4	9,00 - 9.30		74,7		7
3,90 -	4,20	12	67,2		4		18	79,0		7
4,20 -	4,50	16	89,6		4		20	87,8		7
4,50 -	4,80	10	56,0		7	9,60 - 9,90	17	69,6		8
4.80 -	5,10	16	89,6		4	9,90 - 10,20	22	90,1		8
5,10 -	5,40	14	71,8		5	10,20 - 10,50	25	102,4	-	8

Software by Dr.D.MERLIN - 0425/840820

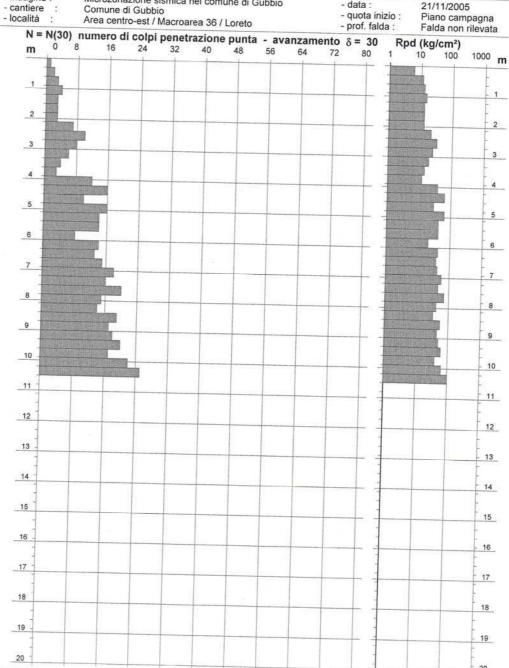
P.IVA 02062020546

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

n° PA2

Microzonazione sismica nel comune di Gubbio


Comune di Gubbio

- data :

Scala 1: 100

- quota inizio :

21/11/2005 Piano campagna

- PENETROMETRO DINAMICO tipo : TG 73-100/200

- M (massa battente)= 73,00 kg $\,$ - H (altezza caduta)= 0,75 m $\,$ - A (area punta)= 20,43 cm 2 - D(diam. punta)= 51,00 mm $\,$ - Uso rivestimento / fanghi iniezione $\,$: SI

Software by: Dr.D.MERLIN - 0425/840820

P.IVA 02062020546

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PA2

 indagine 	:
 cantiere 	
 località 	:

- note :

Microzonazione sismica nel comune di Gubbio Comune di Gubbio

Area centro-est / Macroarea 36 / Loreto

- data : - quota inizio : - prof. falda : 21/11/2005

- pagina :

Piano campagna Falda non rilevata

n°	Profondità (m)	PARAMETRO		ELA	BORA	ZIONE ST	ATIST	ICA		VCA	β	Nsp
			M	min	Max	1/2(M+min)	s	M-s	M+s			
1	0,00 3,90	N Rpd	4,4 28,1	1 8	10 62	2,7 17,9	2,6 15,3	1,8 12,8	7,0 43,5	4 26	1,14	5
2	3,90 10,50	N Rpd	16,0 76,0	8 41	25 102	12,0 58,5	3,8 13,9	12,2 62,1	19,9 89.9	16 76	1,14	18

M: valore medio min; valore minimo Max: valore massimo numero Colpi Punta prova penetrometrica dinamica (avanzamento $\delta = 30 \text{ cm}$) Rpd: resistenza dinamica alla punta (kg/cm²) Rpd: resistenza dinamica alla punta (kg/cm²) Nspt: numero Colpi prova SPT (avanzamento $\delta = 30 \text{ cm}$)

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m)	LITOLOGIA	Nspt	1	NATUR	RA GR	ANULA	RE	N/	ATURA	COE	SIVA
				DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е
1 2	0.00 3.90 3.90 10.50	Argilla Limosa Limo sabbioso con inclusi	5 18	18.3 47.0	28.0 32.4	230 330	1.88 1.98	1.41 1.57	0.31 1.13	1.83 2.00	39 26	1.061

Nspt: numero di colpi prova SPT (avanzamento $_{\delta}$ = $\,$ 30 $\,$ cm)

DR % = densità relativa $g'(^\circ)$ = angolo di attrito efficace $g'(^\circ)$ = angolo di attrito efficace $g'(^\circ)$ = modulo di deformazione drenato $g'(^\circ)$ = contenuto d'acqua Ysat, Yd $g'(^\circ)$ = peso di volume saturo e secco (rispettivamente) del terreno

Software by: Dr.D MERLIN - 0425/840820

32.6.4 Cartografia

Si riportano di seguito gli allegati cartografici essenziali ai fini della valutazione del rischio sisimico.

Per una immediata comprensione degli stessi si è pensato di adottare il seguente ordine:

- legenda carta geologica;
- carta geologica su C.T.R. a scala 1:5.000;
- profili geologici e di suscettibilità sismica locale a scala 1:2.000;
- legenda carta geomorfologica;
- carta geomorfologica su C.T.R. a scala 1:5.000;
- legenda carta litotecnica;
- carta litotecnica su C.T.R. a scala 1:5.000;
- profili litotecnici e di suscettibilità sismica locale a scala 1:2.000;
- legenda carta delle aree suscettibili di amplificazione sismica;
- carta delle aree suscettibili di amplificazione sismica su C.T.R. a scala 1:5.000.

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA GEOLOGICA

LEGENDA

DETRITI DI FALDA

Detriti attuali - recenti. Depositi essenzialmente gravitativi, a granulometria variabile, da ben classati a fortemente eterometrici. I clasti sono prevalentemente a spigoli vivi o subangolosi, per lo più in accumuli massivi o grossolanamente stratificati.

Pleistocene-Olocene

Giacitura ed inclinazione degli strati

Traccia di sezione

COMPLESSO TERRIGENO UMBRO

FORMAZIONE MARNOSO ARENACEA

Alternanza di arenarie torbiditiche, marne e marne siltose con rapporto arenaria/pelite in genere minore di 1. Sono presenti megastrati, sia arenitici di provenienza alpina che calcarenitici, utilizzabili come strati guida.

Membro 1

(associazione pelitico arenacea calcarenitica basale)

Torbiditi pelitico arenacee e calcareo clastiche in strati da sottili a molto spessi con rapporto A/P molto variabile ma in genere <1/4. Contiene lo strato Contessa (Cs) e numerosi altri strati notevoli, con caratteristiche tali da essere potenzialmente utilizzabili come strati guida. La parte di successione posta subito al di sopra del Contessa e la parte sommitale del membro corrispondono a litozone caratterizzate dal rapido susseguirsi di strati calcarenitici di spessore variabile compreso tra 0.2 m a 1.5 m circa e molto ravvicinati fra loro (almeno 8 strati in circa 100 m di successione). Lo spessore non è precisamente valutabile poiché non affiora la base.

. Langhiano superiore- Serravalliano superiore

INDAGINI GEOGNOSTICHE

Prove penetrometriche dinamiche (DPHS)

Prove penetrometriche statiche (CPT)

Sondaggi meccanici a conservazione di nucleo

Sismica a rifrazione

Refraction Microtremor (ReMi)

INDAGINI GEOGNOSTICHE DI RIFERIMENTO

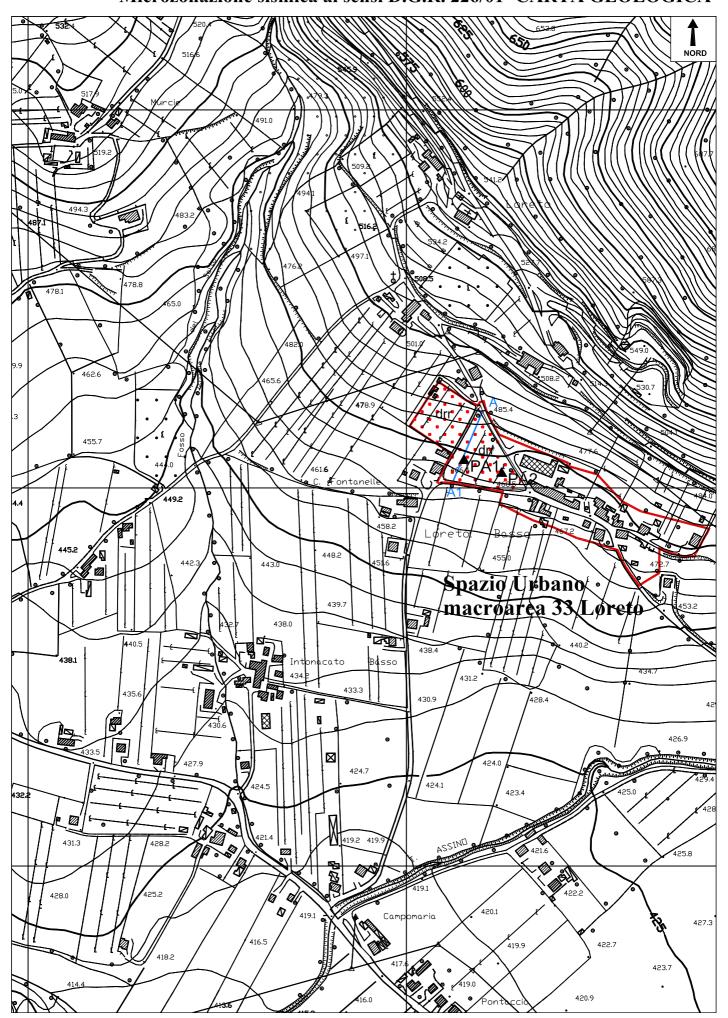
Prove penetrometriche dinamiche (DPHS)

Prove penetrometriche statiche (CPT)

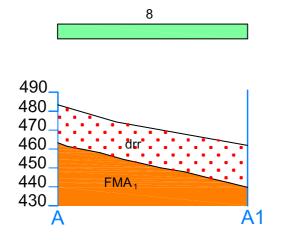
Sondaggi meccanici a conservazione di nucleo

Sondaggi meccanici a distruzione di nucleo

Scavo


Macroaree urbane

Macroaree dei centri rurale



scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOLOGICA


Spazio Urbano macroarea 33 Loreto

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA GEOMORFOLOGICA

	Conoidi di deiezione G7
A A1	Traccia di sezione
01	Macroaree urbane
ćr01	Macroaree dei centri rurale
am01	Macroaree degli ambiti monofunzionali

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOMORFOLOGICA

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA LITOTECNICA

SUBSTRATO

L2

Materiale lapideo stratificato o costituito da alternanze di diversi litotipi:

L2A unico litotipo stratificato

L2B2 più litotipi stratificati (senza predominanza

di calcari e argille)

L2B3 più litotipi stratificati (a predominanza

di argille e/o marne)

COPERTURA E SUBSTRATO ALTERATO

L5

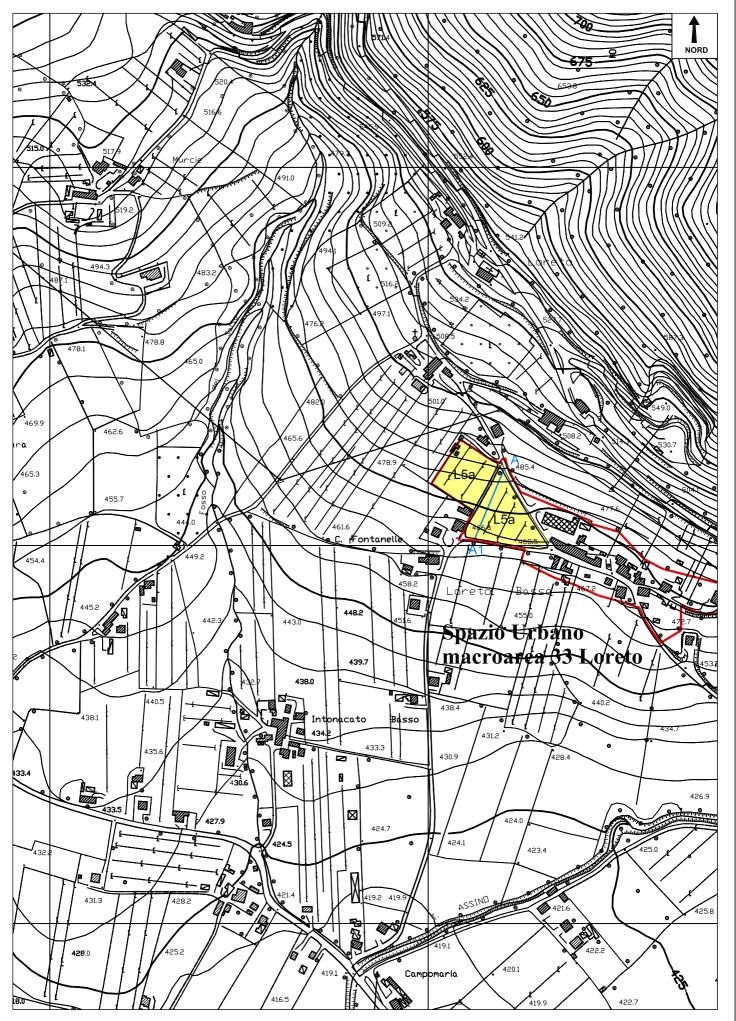
Materiali granulari sciolti o poco addensati:

L5a - a prevalenza ciottolosa (pallinato gs)

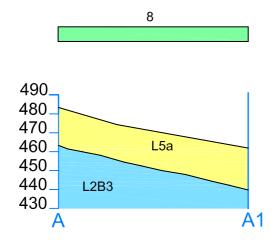
L5b - a prevalenza sabbiosa (puntinato sl)

L5c - a prevalenza limo-argillosa/argillo-limosa (tratteggiato la)

Traccia di sezione


Macroaree urbane

Macroaree dei centri rurale



scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA LITOTECNICA

Spazio Urbano macroarea 33 Loreto

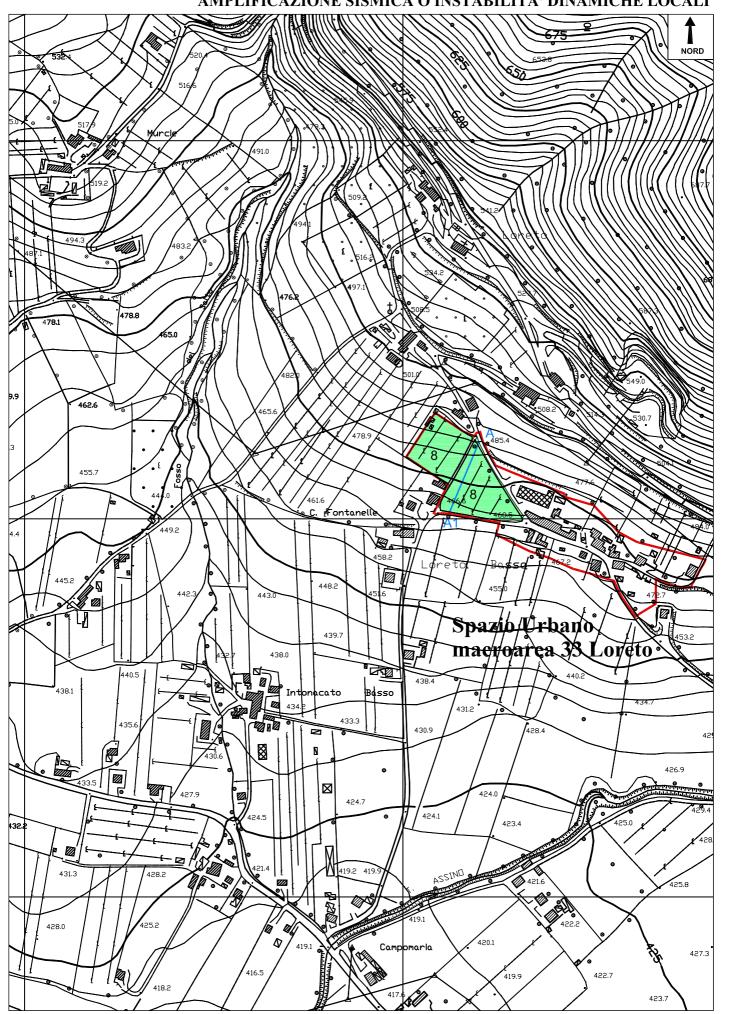
Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA DELLE ZONE SUSCETTIBILI DI AMPLIFICAZIONE SISMICA O INSTABILITA' DINAMICHE LOCALI

TIPOLOGIA DELLE SITUAZIONI RIFERIMENTO NELLE CARTE DI BASE

Zona pedemontana di falda di detrito 8 e cono di deiezione

drr, dra, G7

Traccia di sezione


Macroaree urbane

Macroaree dei centri rurale

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA DELLE ZONE SUSCETTIBILI DI AMPLIFICAZIONE SISMICA O INSTABILITA' DINAMICHE LOCALI

33 RELAZIONE SPAZIO URBANO MACROAREA 34 MONTELETO

(Dott. Geol. Stefano Tosti - loc. "Monteleto - Fontacce" e Dott. Geol Arnaldo Ridolfi – loc. "Villa Benvenuti")

33.1 Caratteristiche geologiche

Le aree in esame sono poste in prossimità del versante sud-occidentale della semibrachianticlinale di Gubbio, dislocata da una faglia diretta a notevole rigetto verticale. La struttura plicativa originale è il risultato prodotto da un campo di stress regionale compressivo iniziato nel Miocene sup..

Questa è stata successivamente dislocata, ad opera di una tettonica tensionale pliopleistocenica, da una grande faglia listrica a direzione appenninica immergente a SW. Tale faglia ha ribassato il fianco occidentale della brachianticlinale eugubina, con un rigetto verticale di circa 1000 metri, formando un graben nella cui porzione nordoccidentale si trovano le aree oggetto di questo studio.

33.1.1 Descrizione degli affioramenti

Non esistono nei dintorni dei toponimi "Fontacce" e "Villa Benvenuti" affioramenti notevoli o singolarità geologiche. Quello che è possibile vedere è costituito da terreni arati, scarpate stradali o sbancamenti per la costruzione di edifici, ma non si va oltre i tre metri di profondità.

33.1.2 Geometria delle formazioni

Nell'area di "Fontacce" si tratta di ghiaie provenienti dai rilievi calcareii posti a nord, la cui geometria del deposito è necessariamente cuneiforme o lenticolare con massimi spessori nella zona pedemontana. Nei dintorni di "Villa Benvenuti" a parte l'andamento cuneiforme dei detriti di falda di versante, i depositi presentano principalmente un andamento lenticolare in superficie fino a diventare più regolari man mano che si scende in profondità.

33.1.3 Tipo di contatto, spessore e sua variabilità

Il contatto tra i litotipi è sempre di natura stratigrafica. I depositi ghiaiosi sono interdigitati con quelli limo-argillosi della pianura per cui il loro spessore è estremamente variabile e generalmente aumenta spostandosi verso la fascia pedemontana. Nell'area di Fontacce il sondaggio ST02 ha attraversato ghiaie per 30 metri. Il contatto con le argille, vista la genesi delle ghiaie dovrebbe essere di tipo erosivo dato che non e mai visibile.

33.2 Caratteristiche geomorfologiche

L'area di Fontacce"oggetto di questa indagine si estende per circa 0.3 km², ed è posta tra le quote di m. 456 e 420 m s. l. m. immediatamente a sud della frazione di Monteleto.

I terreni in esame si trovano a circa 100 metri a nord della S.S. 219 Pian d'Assino e si inseriscono nella fascia pedemontana di raccordo tra la piana eugubina ed i rilievi omonimi posti immediatamente a nord rappresentati dal Monte Leto (945 m).

Il versante si presenta inclinato verso sud-ovest con pendenze crescenti verso monte che per il tratto in esame vanno da 8° a 12°.

Non sono stati riscontrati fenomeni di instabilità, né di ristagno delle acque meteoriche che interessino l'area o che l'abbiano interessata in passato. La natura ghiaiosa del substrato unitamente alla pendenza, ha fatto si che in passato sporadici "debris flow" dovuti a precipitazioni estive, concentrate e di breve durata, abbiano interessato l'area marginalmente. Oggi grazie soprattutto ad una intensa opera di rimboschimento del versante a monte, tali fenomenoi non avvengono più.

Si ritiene infine che l'assetto morfologico superficiale sia stato modificato dall'azione antropica nel corso del tempo.

Nell'area di Villa Benveduti dal punto di vista geomorfologico, a parte l'ubicazione della frana PAI, non si rilevano particolari fenomenologie. I terreni sono da considerarsi stabili dal punto di vista gravitativo. Non si rilevano nelle aree in oggetto fenomeni di movimento di terreno superficiale sia in atto che potenziali tantomeno fenomeni di cedimenti localizzati.

33.3 Schema idrogeologico generale e permeabilità relative dei terreni e delle rocce

I terreni esaminati denotano una permeabilità medio alta per la presenza di materiale a granulometria grossolana. L'infiltrazione prevale sul ruscellamento e non si hanno fenomeni di ristagno delle acque. Limitatamente alla zona oggetto di questa indagine, nella parte più bassa si riscontra la presenza di numerose sorgenti da cui il toponimo "Fontacce". Queste sono il risultato dell'emersione di una piccola falda superficiale, incontrata a 4 metri di profondità nel sondaggio ST02, sostenuta da un livello argilloso interdigitato con le ghiaie. Una falda più profonda è invece presente all' interno di alcuni pozzi limitrofi, ad una profondità di circa -15 m. dall'attuale piano di campagna. Nell'area di Villa Benveduti terreni presenti possono essere considerati abbastanza permeabili e le acque meteoriche vengono direttamente assorbite nel terreno. L'idrografia superficiale è rappresentata dal T. Assino che scorre in senso longitudinale da nord a sud.

La falda idrica sottostante si trova ad una profondità di ca. 29 m ed è impostata all'interno del sub strato roccioso rappresentato dalla Formazione Marnoso arenacea. L'area di ricarica degli acquiferi è situata nella parte pedemontana e avviene per infiltrazione diretta o ricarica laterale operata dalle formazioni calcaree presenti a monte. La discarica avviene verso Sud, sia attraverso il collettore principale rappresentato dal torrente Assino, sia artificialmente, ad opera dell'azione antropica, mediante l'emungimento di pozzi presenti a valle.

33.4 Caratteristiche litotecniche

Nell'area di Fontacce, da un punto di vista litotecnico, sedimenti presenti appartengono ad un'unica unità litotecnica classificabile come copertura costituita da materiali granulari sciolti o poco addensati a prevalenza ciottolosa, identificati con la sigla **L5a**. L'area di Villa Benvenuti comprende principalmente tre tipologie litologiche: il detrito di falda s.s., le alluvioni limoso argillose con l'interdigitazione di sedimenti ghiaiosi e ghiaioso sabbiosi nonché il substrato roccioso Marnoso arenaceo.

Dal punto di vista litotecnico si assiste quindi ad una variabilità granulometrica e litologica man mano che si procede dai settori nord in cui è presente solo il detrito di falda fino a quelli più a sud dove i sedimenti a granulometria prevalentemente ghiaiosa sono interdigitati con quelli alluvionali argillosi e limoso argillosi. Le unità litotecniche

fanno riferimento alla classe L5 e precisamente L5a per i terreni a prevalenza ciottolosa e L5c per i terreni prevalentemente argilloso limosi.

33.4.1 Unità litotecniche della copertura e/o basamento alterato

Dai dati di superficie e dalle indagini eseguite, si è potuto constatare che i terreni in oggetto sono costituiti principalmente dal detrito di falda s.l. che borda a SW i rilievi calcarei di Gubbio, interdigitato verso valle con i depositi fluvio-lacustri della piana antistante.

Esso è composto da una ghiaia poligenica a clasti prevalentemente calcarei, a spigoli vivi, immersi in una matrice limoso-argillosa e/o limoso-sabbiosa rossiccia.

I clasti sono eterometrici con diametri inferiori al decimetro, e poligenici visto che si riscontrano litotipi calcarei calcareo marnosi e silicei. Tale materiale può presentarsi cementato come ad esempio negli ultimi metri del sondaggio ST02. La genesi di questo detrito di falda è dovuta ptincipalmente a fenomeni di crioclastismo che interessano i rilievi calcarei della dorsale eugubina che si ergono immediatamente a nord con la conseguente rettificazione dei versanti stesi. La loro messa in posto è avvenuta in seguito a "debris flow" provenienti dai rilievi posti poco a nord. Localmente all'interno di detto detrito si rinvengono piccoli livelli e lenti di limi argillosi con scarsa continuità laterale.

33.4.2 Unità litotecniche del substrato

Per le profondità indagate è stato raggiunto solo in loc. Villa Beneduti. È costituito dalla Formazione Marnoso – arenacea caratterizzata da alternanze di marne arenarie e calcareniti con un rapporto A/P variabile da 1:5 a 1:10 e attribuibile al membro FMA1 basale (**L2B3**).

33.5 Indagini geognostiche di riferimento

Nell'area non esistono prove geognostiche di riferimento.

33.6 Indagini geognostiche eseguite

Nell'area di "Fontacce" è stato eseguito un sondaggio ST02 a carotaggio continuo spinto fino alla profondità di 30 metri e due prove penetrometriche PDPHS T01 e PDPHS T02 sino alla profondità di 10 metri ciascuna.

Nell'area di Villa Benveduti si elenca il numero e le tipologie di prove effettuate:

- <u>n. 2 indagini penetrometriche fino a 10 m di profondità</u> e precisamente da PA3 a PA4;
- <u>n. 3 sondaggi a rotazione e a conservazione di nucleo e precisamente:</u> SA1 fino a 30 m di profondità; SA14 e 15 fino a 40 m di profondità e con prova Down Hole in foro;
- <u>n.2 indagini sismiche ReMi (Rm) con stendimenti di ca. 100 m</u> e precisamente RmA11 E RmA12.

33.7 Cartografia di sintesi

33.7.1 Carta delle zone suscettibili di amplificazione o insatbilità dinamiche locali

Dalle carte Morfologica e Litotecnica, facenti parte di questo studio, viene derivata la "carta delle zone suscettibili di amplificazione o insatbilità dinamiche locali", rispetto ad un moto sismico di riferimento. La carta fornisce una perimetrazione areale delle diverse situazioni morfostratigrafiche. I numeri non fanno riferimento a situazioni di pericolosità crescente, in quanto ciascuna area possiede una sua identità sia in relazione alle caratteristiche geologiche e morfologiche che a quelle dell'evento sismico.

Le aree rilevate all'interno della macroarea in oggetto comprendono sia la zona 8 (zona pedemontana di falda di detrito e cono di deiezione) che la 7C (zona di fondovalle).

33.7.1.1 Zona 7

Riguardano il settore sud dell' area Villa Benveduti. Data la natura litologica prevalentemente limoso argillosa, si è attribuito a questi terreni la classe specifica 7C.

33.7.1.2 Zona 8

La zona 8 evidenzia le aree con possibile amplificazione del moto sismico legate in primo luogo alla diversa impedenza sismica tra substrato e copertura e secondariamente alla conformazione geometrica con conseguenti fenomeni di focalizzazione sismica. Tutta l'area di "Fontacce" ricade nella zona 8 come zona pedemontana di falda di detrito e cono di deiezione. Nell'area di Villa Benvenuti appartengono alla zona 8 tutte le altre aree dove si rileva la presenza in superficie di detrito di falda.

33.7.2 Carta del rischio sismico: classi di amplificazione sismica locale

Tale carta è la carta di sintesi finale che tiene conto di tutti i risultati delle indagini effettuate nell'area, di quelle di riferimento ove ce ne fossero e della cartografia fin qui prodotta. Le classi di rischio relative ai terreni microzonati sono indicate nell'elaborato Es.7 "Carta del rischio sismico" nelle seguenti tavole: Foglio 03 (11 III); Foglio 04 (11 III)

Le varie aree vengono quindi divise in quattro classi di amplificazione sismica locale:

- Classe A amplificazione bassa o nulla
- Classe B amplificazione media
- Classe C amplificazione elevata
- Classe D amplificazione molto elevata

33.7.2.1 Classe A

Tutta l'area di "Fontacce" rientra nella classe di amplificazione A bassa o nulla poiché presenta una copertura costituita da detrito di falda ghiaioso con spessore superiore ai 30 metri.

33.7.2.2 Classe D

All'area di Villa Benvenuti, si è attribuita questa classe in virtù del fatto che il detrito di falda e le alluvioni hanno uno spessore compreso tra i 20 m e i 30 m.

33.7.3 Diagrafie indagini geognostiche Prove penetrometriche a cura del Dott. Geol. Stefano Tosti

PERIGEO SONDAGGI Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 106-05

PROVA	PENETROMETRICA DINAMICA	
TABELL	VALORI DI RESISTENZA	

n° PT1

		IADL	-LLL VALC								
- indagine : Mlcrozonazione sismica nel comune di Gubbio - cantiere : Comune di Gubbio - località : Area Est-Ovest / Macroarea 37 / Monteleto - note :								a inizio : l falda : l	07/12/2005 Piano campagna Falda non rilevata 1		
Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.(m)	N(colpi p)	Rpd(kg/cn	n²) N(colpi r)	asta	
0.00 -	0,30	11	85,1		1	5.10 - 5.40	29	148,8		5	
0.30 -	0,60	13	100,5		1	5,40 - 5,70	33	169,3		5	
0,60 -	0,90	10	68.6		2	5,70 - 6,00	28	143,7		5	
0.90 -	1,20	10	68,6		2	6,00 - 6,30	35	179,6		5	
1,20 -	1,50	12	82,4		2	6,30 - 6,60	36	184,7		5	
1,50 -	1,80	15	102,9		2	6,60 - 6,90	30	142,0		6	
1,80 -	2.10	18	123,5		2	6,90 - 7,20	27	127,8		6	
2.10 -	2,40	20	123,4		3	7,20 - 7,50	26	123,0		6	
2,40 -	2,70	21	129,5		3	7,50 - 7,80	34	160,9		6	
2,70 -	3,00	20	123,4		3	7,80 - 8,10	39	184,6		6	
3.00 -	3,30	25	154,2		3	8,10 - 8,40	36	158,1		7	
3,30 -	3,60	28	172,7		3	8.40 - 8.70	41	180,0		7	
3,60 -	3.90	23	128,8		4	8.70 - 9.00	38	166,9		7	
3,90 -	4,20	27	151,2		4	9,00 - 9,30	41	180,0		7	
4,20 -	4,50	24	134,4		4	9.30 - 9.60	44	193,2		7	
4.50 -	4.80	25	140.0		4	9.60 - 9.90	40	163,9		8	
4,80 -	5,10	27	151,2		4	9,90 - 10,20	43	176,1		8	

Software by: Dr.D.MERLIN - 0425/840820

P.IVA 02062020546

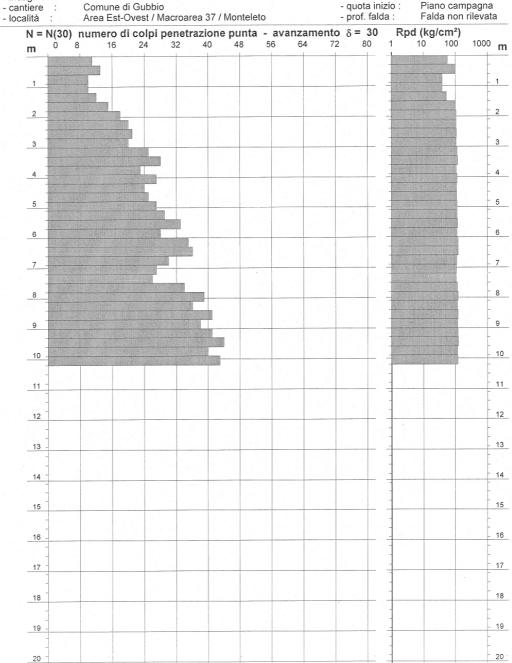
⁻ PENETROMETRO DINAMICO tipo : TG 73-100/200 - M (massa battente)= 73,00 kg $^{\circ}$ - H (altezza caduta)= 0,75 m - Numero Colpi Punta N = N(30) [δ = 30 cm] - A (area punta)= 20,43 cm $^{\circ}$ - D(diam. punta)= 51,00 mm - Uso rivestimento / fanghi iniezione : SI

PERIGEO SONDAGGI s.n.c. di Pelicci Dr. Fausto & C.

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 106-05

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd


n° PT1

Scala 1: 100 - data :

MIcrozonazione sismica nel comune di Gubbio - indagine : cantiere

- quota inizio :

07/12/2005 Piano campagna

- PENETROMETRO DINAMICO tipo : TG 73-100/200

- M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - A (area punta)= $20,43 \text{ cm}^2$ - D(diam. punta)= 51,00 mm - Numero Colpi Punta N = N(30) [δ = 30 cm] - Uso rivestimento / fanghi iniezione : SI

Software by: Dr.D.MERLIN - 0425/840820

P.IVA 02062020546

PERIGEO SONDAGGI s.n.c. di Pelicci Dr. Fausto & C.

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 106-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PT1

-	
- indagine :	MIcrozonazione sismica nel comune di Gubbio
	Camarina di Cubbia

- località : Comune di Gubbio

Area Est-Ovest / Macroarea 37 / Monteleto

- data : 07/12/2005 - quota inizio :

Piano campagna - prof. falda : Falda non rilevata

- note :		- pagina

pagina	

n°	Profondità (m)	PARAMETRO	ELABORAZIONE STATISTICA							VCA	β	Nspt
			М	min	Max	½(M+min)	s	M-s	M+s			
1	0,00 1,20	N Rpd	11,0 80,7	10 69	13 101	10,5 74,7				11 81	1,14	13
2	1,20 7,50	N Rpd	25,2 139,8	12 82	36 185	18,6 111,1	6,1 24,8	19,1 115,1	31,3 164,6	25 139	1,14	29
3	7,50 10,20	N Rpd	39,6 173,7	34 158	44 193	36,8 165,9	3,2 11,9	36,3 161,8	42,8 185,7	40 176	1,14	46

s: scarto quadratico medio

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m)	LITOLOGIA	Nspt	NATURA GRANULARE					NATURA COESIVA			
				DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е
1 2 3	0.00 1.20 1.20 7.50 7.50 10.20	Limo Sabbioso Sabbia Limosa con trovanti Ghiaia media e Sabbia fine	13 29 46	39.5 63.5 81.0	30.9 35.7 40.0	292 415 546	1.95 2.05 2.13	1.53 1.68 1.82	0.81 1.81 2.88	1.93 2.13 2.33	30 19 10	0.818 0.506 0.274

Nspt: numero di colpi prova SPT (avanzamento $_{\delta}$ = 30 cm)

DR % = densità relativa $\,$ ø' (°) = angolo di attrito efficace $\,$ e (-) = indice dei vuoti $\,$ Cu (kg/cm²) = coesione non drenata

E' (kg/cm²) = modulo di deformazione drenato W% = contenuto d'acqua Ysat, Yd (t/m³) = peso di volume saturo e secco (rispettivamente) del terreno

M: valore medio min: valore minimo Max: valore massimo s: scarto quadratico medio numero Colpi Punta prova penetrometrica dinamica (avanzamento β = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) Nspt: numero Colpi prova SPT (avanzamento β = 30 cm) Nspt: numero Colpi prova SPT (avanzamento β = 30 cm)

Via della Piaggiola, 152 06024 GUBBIO (PG)

Rifer. 106-05

CPT PT2

PROVA PENETROMETRICA STATICA LETTURE DI CAMPAGNA / VALORI DI RESISTENZA

- committente :

Comune di Gubbio

- data :

2.01PG05-065 07/12/2005

- lavoro : - località : - note :

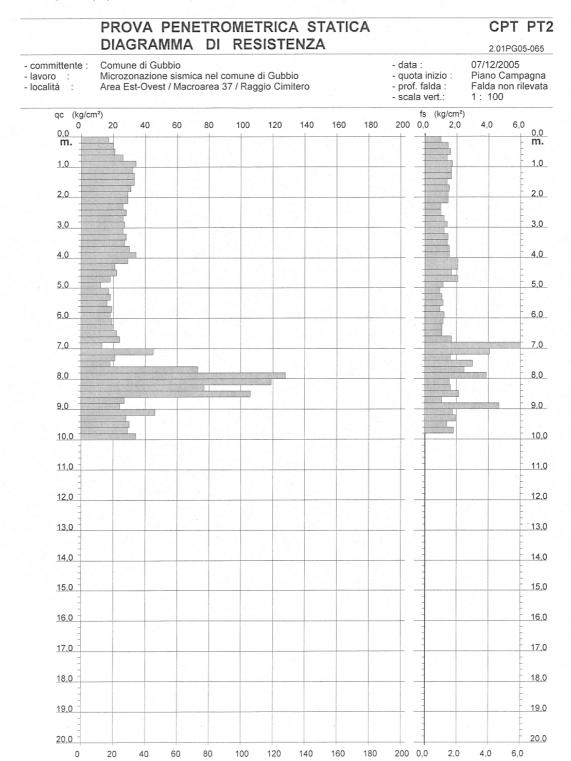
Microzonazione sismica nel comune di Gubbio Area Est-Ovest / Macroarea 37 / Raggio Cimitero

- quota inizio : - prof. falda :

Piano Campagna Falda non rilevata

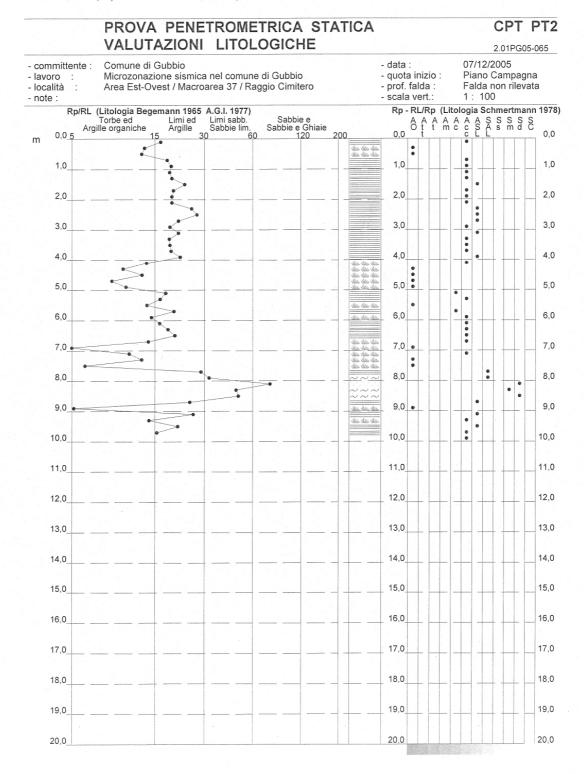
- pagina :

Prof.	Letture d punta	i campagn laterale	a qc kg	fs g/cm²	qc/fs	Prof. m	Letture o	di campa latera		c fs kg/cm²	qc/fs	
0.20	17.0	17,0	17.0	1,00	17,0	5,20	17,0	34,0	17,0	0,93	18,0	
0.40	20,0	35,0	20.0	1,47	14,0	5,40	18,0	32,0	18,0	1,07	17,0	
0,60	21,0	43,0	21,0	1,60	13,0	5,60	16,0	32,0	16,0	1,13	14,0	
0,80	26,0	50,0	26,0	1,40	19,0	5,80	19,0	36,0	19,0	0,93	20,0	
1,00	34.0	55.0	34,0	1,73	20,0	6,00	18,0	32,0	18,0	1,20	15,0	
1,20	32.0	58,0	32,0	1,67	19,0	6,20	19,0	37,0	19,0	1,13	17,0	
1,40	33,0	58,0	33,0	1,67	20,0	6,40	20,0	37,0	20,0	1,07	19,0	
1,60	33,0	58,0	33,0	1,40	24,0	6,60	22,0	38,0	22,0	1,07	21,0	
1,80	31,0	52,0	31,0	1,53	20,0	6,80	24,0	40,0	24,0	1,67	14,0	
2,00	29,0	52,0	29,0	1,47	20,0	7,00	13,0	38,0	13,0	6,13	2,0	
2,20	29,0	51,0	29,0	1,47	20,0	7,20	45,0	137,0	45,0	4,07	11,0	
2,40	26,0	48,0	26,0	1,00	26,0	7,40	21,0	82,0	21,0	1,60	13,0	
2,60	28,0	43,0	28,0	1,00	28,0	7,60	18,0	42,0	18,0	3,00	6,0	
2,80	26,0	41,0	26,0	1,20	22,0	7,80	73,0	118,0	73,0	2,47	30,0	
3,00	27,0	45,0	27,0	1,40	19,0	8,00	128,0	165,0	128,0	3,87	33,0	
3,20	26,0	47,0	26,0	1,20	22,0	8,20	119,0	177,0	119,0	1,53	78,0	
3,40	28,0	46,0	28,0	1,47	19,0	8,40	77,0	100,0	77,0	1,60	48,0	
3,60	27,0	49,0	27,0	1,40	19,0	8,60	106,0	130,0	106,0	2,13	50,0	
3,80	30,0	51,0	30,0	1,53	20,0	8,80	27,0	59,0	27,0	1,07	25,0	
4,00	34,0	57,0	34,0	1,53	22,0	9,00	24,0	40,0	24,0	4,67	5,0	
4,20	29,0	52,0	29,0	2,07	14,0	9,20	46,0	116,0	46,0	1,73	27,0	
4,40	21,0	52,0	21,0	2,07	10,0	9,40	28,0	54,0	28,0	1,93	14,0	
4,60	22,0	53,0	22,0	1,67	13,0	9,60	30,0	59,0	30,0	1,40	21,0	
4,80	18,0	43,0	18,0	2,07	9,0	9,80	29,0	50,0	29,0	1,80	16,0	
5,00	12,0	43,0	12,0	1,13	11,0	10,00	34,0	61,0	34,0			


Software by: Dr.D.MERLIN - 0425/840820

P.IVA 02062020546

PENETROMETRO STATICO tipo PAGANI da 10/20t
 COSTANTE DI TRASFORMAZIONE Ct = 10 - Velocità Avanzamento punta 2 cm/s
 punta meccanica tipo Begemann ø = 35.7 mm (area punta 10 cm² - apertura 60°)
 manicotto laterale (superficie 150 cm²)


Via della Piaggiola, 152 06024 GUBBIO (PG)

Rifer. 106-05

Via della Piaggiola, 152 06024 GUBBIO (PG)

Rifer. 106-05

PERIGEO SONDAGGI Via della Piaggiola, 152 06024 GUBBIO (PG)

Rifer. 106-05

PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT PT2 2.01PG05-065

- committente :	Comune di Gubbio	- data :	07/12/2005
- lavoro :	Microzonazione sismica nel comune di Gubbio	 quota inizio : 	Piano Campagna
- località :	Area Est-Ovest / Macroarea 37 / Raggio Cimitero	- prof. falda :	Falda non rilevata
- note :		- pagina :	1

. 1	iote															- pa	gina			1			
								NA"	ΓURA	COES	AVI					NAT	JRA	GRA	NUL	ARE			
		Prof. m	qc kg/cm²	qc/fs (-)	Natura Litol	Y' t/m³	d'vo kg/cm²	Cu kg/cm²	OCR (-)	Eu50 kg/d	Eu25 m²	Mo kg/cm²	Dr %	ø1s (°)	ø2s (°)	ø3s (°)	ø4s (°)	ødm (°)	ømy (°)	Amax/g (-)	E'50 kg/		Mo /cm²
		0.20 0.40 0.60 1.00 1.20 1.40 1.180 2.22 1.40 1.180 2.22 1.40 1.180 2.22 1.40 1.4	17 20 21 34 32 33 33 31 219 26 27 27 28 29 26 27 27 28 29 29 20 21 21 21 21 21 21 21 21 21 21 21 21 21	174 139 209 202 202 202 202 202 203 203 203 203 203	211111 4111-14111-1411-1411-1411-1411-14	1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85	0.04 0.07 0.115 0.122 0.033 0.33 0.37 0.41 0.48 0.52 0.633 0.37 0.74 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78	0.7280 0.823 0.823 1.107 1.107 1.103 0.988 0.937 1.107 0.988 0.937 0.985 0.937	99993573449398002078874442144482888011295019	1233 1366 1400 1408 1408 1408 1408 1408 1408 1408	1884 204 2100 237 2889 2172 2881 2281 2281 2281 2281 2281 2281	540 638 20 66 99 98 77 84 48 18 88 90 2 87 36 66 65 44 55 28 56 86 67 47 55 36 98 73 88 89 87 73 88 48 90 75 75 88 89 87 75 88 89 80 75 89 80 80 75 89 80 80 75 89 80 80 75 80 80 80 80 80 80 80 80 80 80 80 80 80		39 38 39 37 6 36 36 37 4 34 34 34 34 34 35 36 36 37 6 36 36 37 6 37 6 37 6 37 6	11 400 440 440 440 440 440 440 440 440 4	-3422421411400 399399388388398377	14444444444444444444444444444444444444	11 410 440 440 440 440 440 440 440 440 4	277282992292282222222222222222222222222	0.191	33537375355552884837475555484837475747508578457	80 83 83 83 87 73 76 65 65 66 65 66 67 67 65 67 67 65 67 67 67 67 67 67 67 67 67 67 67 67 67	

Software by: Dr.D.MERLIN - 0425/840820

Prove penetrometriche a cura del Dott. Geol. Arnaldo Ridolfi

PERIGEO SONDAGGI

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

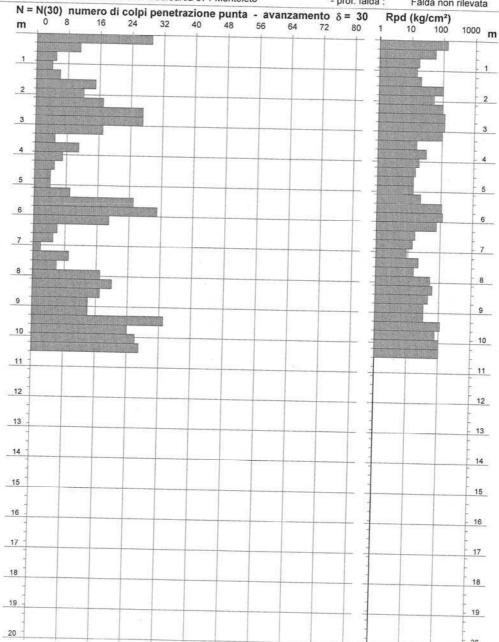
PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

n° PA3

- indagine : - cantiere : - località : - note :		: Con	rozonazione sisr nune di Gubbio a centro-est / Ma			a inizio : Piano campa falda : Falda non ril		jna vata		
Pro	of.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof.(m)	N(colpi p)	Rpd(kg/cm	²) N(colpi r)	asta
0,00 -		29	224,3	****	1	5,40 - 5.70	25	128,3		_
0,30 -	0,60	11	85,1		1	5,70 - 6,00	31	159,0	-	5
0,60 -	0,90	5	34,3		2	6,00 - 6,30			1500000	5
0,90 -	1,20	4	27,5	-	2	6,30 - 6,60	6	97,5		5
1,20 -	1,50	6	41.2	****	2	6,60 - 6,90	5	30,8		5
1,50 -	1,80	15	102,9		2	6,90 - 7,20	3	23,7	75345	6
1,80 -	2,10	12	82,4		2	7,20 - 7,50	19 6 5 2 9	9,5	****	6
2.10 -	2,40	17	104,9		3		9	42,6	70.70	6
2,40 -	2.70	27	166,6		3			28,4		
2.70 -	3.00	27	166,6		94.70	7,80 - 8,10	17	80,4		6
3,00 -	3.30	17	104,9	7700	3	8,10 - 8,40	20	87,8		7
3,30 -	3.60	5			3	8,40 - 8,70	17	74,7	*****	7
3,60 -	3.90	11	30,8	****	3	8,70 - 9,00	14	61,5		7
3.90 -			61,6		4	9,00 - 9,30	14	61,5	****	7
	4,20	7	39,2	(eees	4	9,30 - 9,60	33	144,9	****	7
4,20 -	4,50	5	28,0		4	9,60 - 9,90	24	98.3	1 5755550	8
4,50 -	4,80	4	22,4	****	4	9,90 - 10,20	26	106,5		8
4,80 -	5,10	4	22,4	****	4	10,20 - 10,50	27	110,6	9 735-3 56	8
5,10 -	5,40	9	46,2	****	5		7. S	170,0	0.000	0

Software by Dr.D.MERLIN - 0425/840820


P.IVA 02062020546


Via della Piaggiola, 152 06024 GUBBIO (PG)

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° PA3

- PENETROMETRO DINAMICO tipo : TG 73-100/200

- M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - A (area punta)= $20,43 \text{ cm}^2$ - D(diam. punta)= 51,00 mm - Numero Colpi Punta N = N(30) [δ = 30 cm] - Uso rivestimento / fanghi iniezione : SI

Software by: Dr.D.MERLIN - 0425/840820

P.IVA 02062020546

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

n° PA3

- indagine : cantiere

- note :

Microzonazione sismica nel comune di Gubbio

Comune di Gubbio - località :

Area centro-est / Macroarea 37 / Monteleto

- data : - quota inizio : - prof. falda : 21/11/2005

- pagina :

Piano campagna Falda non rilevata

n°	Profondità (m)	rofondità (m) PARAMETRO ELABORAZIONE STATISTIC						ABORAZIONE STATISTICA				ELABORAZIONE STATISTICA							
			М	min	Max	½(M+min)	s	M-s	M+s		1 1								
1	0,00 10,50	N Rpd	14,6 78,2	2 10	33 224	8,3 43,8	9,3 51,2	5,3 27,0	23,8 129,4	15 80	1,14	17							

M: valore medio min: valore minimo Max: valore massimo N: numero Colpi Punta prova penetrometrica dinamica (avanzamento δ = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) Rpd: resistenza dinamica alla punta (kg/cm²) Nspt: numero Colpi prova SPT (avanzamento δ = 30 cm)

Nspt - PARAMETRI GEOTECNICI

n°	Prof.(m)	LITOLOGIA	Nspt	١	NATUR	RA GR	ANULA	RE	N/	ATURA	COE	SIVA
				DR	ø'	E'	Ysat	Yd	Cu	Ysat	W	е
1	0.00 10.50	Ghiaia con livelli limo-sabbiosi	17	45.5	32.1	322	1.97	1.56	1.06	1.98	27	0.729

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa ø' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu (kg/cm²) = coesione non drenata

Ysat, Yd (t/m3) = peso di volume saturo e secco (rispettivamente) del terreno

Software by: Dr.D.MERLIN - 0425/840820

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA TABELLE VALORI DI RESISTENZA

n° PA4

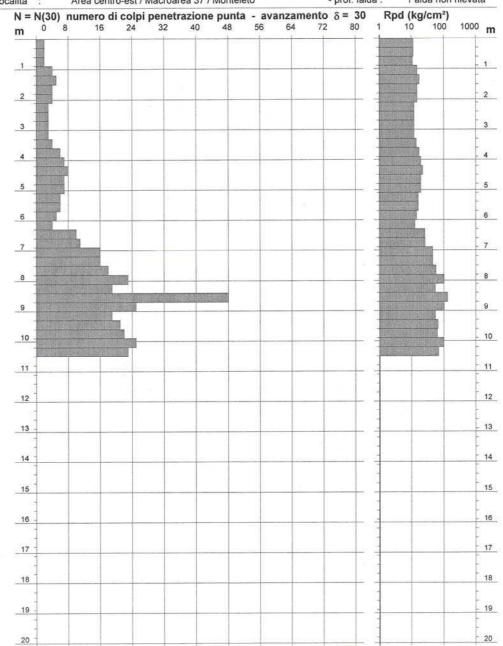
- c	ndagine antiere ocalità iote :	: Com	ozonazione sisn nune di Gubbio a centro-est / Ma			9		a inizio : Pia falda : Fal	21/11/2005 Piano campagna Falda non rilevat 1		
Pro	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta	Prof	f.(m)	N(colpi p)	Rpd(kg/cm²)	N(colpi r)	asta
0.00 -	0.30	2	15,5		1	5,40 -	5,70	6	30,8	15000	5
0,30 -	0,60	2	15,5		1	5,70 -	6,00	5	25,7		5
0,60 -	0.90	2	13.7		2	6,00 -	6,30	4	20,5		5
0.90 -	1.20	4	27,5		2	6,30 -	6,60	10	51,3		5
1,20 -	1,50	5	34,3		2	6,60 -	6,90	11	52,1		6
1,50 -	1.80	4	27,5		2	6,90 -	7,20	16	75,7	-	6
1,80 -	2,10	4	27,5		2	7,20 -	7,50	16	75,7		6
2.10 -	2.40	3	18,5		3	7,50 -	7,80	18	85,2		6
2.40 -	2,70	3	18,5	****	3	7,80 -	8,10	23	108,8	5222	6
2.70 -	3,00	3	18.5		3	8,10 -	8,40	19	83,4		7
3,00 -	3.30		18,5		3	8,40 -	8,70	48	210,8		7
3,30 -	3,60	3	24,7		3	8,70 -	9,00	25	109,8		7
3,60 -	3.90		33,6		4	9,00 -	9,30	19	83,4		7
3,90 -	4.20	6 7	39,2	****	4	9,30 -	9,60	21	92,2	****	7
4.20 -	4.50	8	44,8	2000	4	9,60 -	9,90	22	90,1	****	8
4,50 -	4.80	7	39,2		4	9,90 -	10,20	25	102,4	1	8
4,80 -	5,10	7	39,2		4	10,20 -	10,50	23	94,2		8
5,10 -	5,40	6	30,8	****	5						

Software by: Dr.D.MERLIN - 0425/840820

P.IVA 02062020546

⁻ PENETROMETRO DINAMICO tipo : TG 73-100/200 - M (massa battente) = 73,00 kg - H (altezza caduta) = 0,75 m - Numero Colpi Punta N = N(30) [δ = 30 cm] - A (area punta) = 20,43 cm² - D(diam. punta) = 51,00 mm - Uso rivestimento / fanghi iniezione : SI

Via della Piaggiola, 152 06024 GUBBIO (PG)


Riferimento: 105-05

Scala 1: 100

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° PA4

- indagine : Microzonazione sismica nel comune di Gubbio - data : 21/11/2005 - cantiere : Comune di Gubbio - quota inizio : Piano campagna - località : Area centro-est / Macroarea 37 / Monteleto - prof. falda : Falda non rilevata

- PENETROMETRO DINAMICO tipo: TG 73-100/200

- M (massa battente)= 73,00 kg - H (altezza caduta)= 0,75 m - A (area punta)= 20,43 cm² - D(diam. punta)= 51,00 mm

- Numero Colpi Punta N = N(30) [δ = 30 cm]

- Uso rivestimento / fanghi iniezione : SI

Software by Dr.D.MERLIN - 0425/840820

P.IVA 02062020546

Via della Piaggiola, 152 06024 GUBBIO (PG)

Riferimento: 105-05

PROVA PENETROMETRICA DINAMICA **ELABORAZIONE STATISTICA**

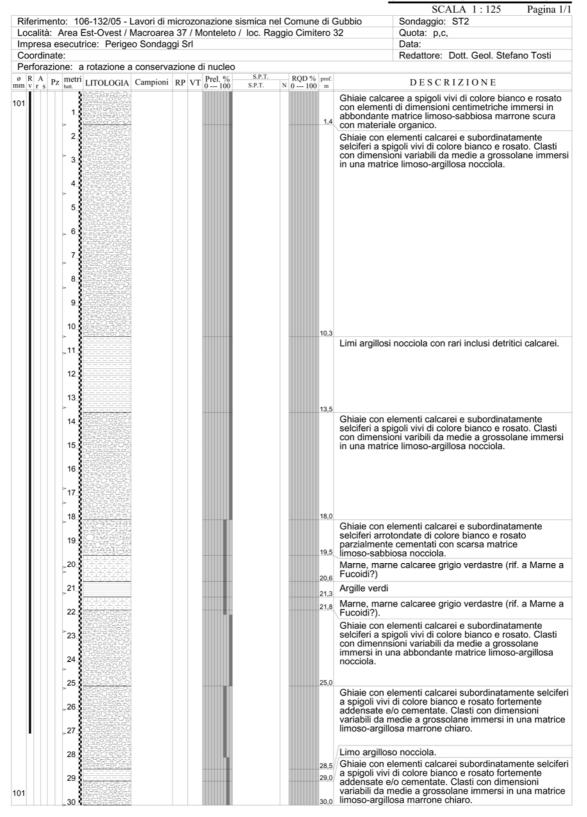
n° PA4

- indagine : Microzonazione sismica nel comune di Gubbio - cantiere : Comune di Gubbio - località : Area centro-est / Macroarea 37 / Monteleto - note :	- data : - quota inizio : - prof. falda : - pagina :	21/11/2005 Piano campagna Falda non rilevata

n°	Profondità (m)	PARAMETRO		ELABORAZIONE STATISTICA						VCA	β	Nspt
			М	min	Max	½(M+min)	s	M-s	M+s		82	
1	0,00 6,30	N Rpd	4,5 26,8	2 14	8 45	3,3 20,3	1,8 9,1	2,7 17,7	6,4 36,0	4 24	1,14	5
2	6,30 10,50	N Rpd	21,1 93,9	10 51	48 211	15,6 72,6	9,0 38,0	12,1 56,0	30,2 131,9	21 94	1,14	24

M: valore medio min: valore minimo Max: valore massimo N: numero Colpi Punta prova penetrometrica dinamica (avanzamento β = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) Spt: numero Colpi prova SPT (avanzamento β = 30 cm) Rpd: resistenza dinamica alla punta (kg/cm²) Nspt: numero Colpi prova SPT (avanzamento β = 30 cm) Max: valore massimo s: scarto quadratico medio

Nspt - PARAMETRI GEOTECNICI


n°	Prof.(m)	LITOLOGIA	Nspt	N	IATUR	A GR	ANULA	RE	N/	ATURA	COE	SIVA
	V2 (.5)			DR	ø'	E,	Ysat	Yd	Cu	Ysat	W	е
1 2	0.00 6.30 6.30 10.50	Argilla Limosa Sabbia Limosa con ghiaia	5 24	18.3 56.0	28.0 34.2	230 376	1.88 2.01	1.41 1.63	0.31 1.50	1.83 2.07	39 22	1.06

Nspt: numero di colpi prova SPT (avanzamento δ = 30 cm)

DR % = densità relativa \mathscr{A}' (°) = angolo di attrito efficace e (-) = indice dei vuoti Cu ($\mathsf{kg/cm^2}$) = coesione non drenata Cu ($\mathsf{kg/cm^2}$) = peso di volume saturo e secco (rispettivamente) del terreno

Sondaggio geognostico a cura del Dott. Geol. Stefano Tosti

STRATIGRAFIA - ST2

Sondaggi geognostici a cura del Dott. Geol. Arnaldo Ridolfi

STRATIGRAFIA - SA1

Diferimen	-t-: 40E 400/0E I		os mal Comuna di Cubbia	SCALA 1:125 Pagina 1/1
		Lavori di microzonazione sismi Macroarea 37 / Monteleto S.U		Sondaggio: SA1 Quota: p,c,
Impresa	esecutrice: Perige	o Sondaggi Srl	**	Data:
Coordina		, concentrazione di puoleo		Redattore: Dott. Geol. Arnaldo Ridolfi
		conservazione di nucleo	P.T. ROD % prof	D D C CD LET CAME
ø R A P	z metri LITOLOGIA	Campioni RP VT Prel. % SP	T. N 0 100 m	DESCRIZIONE
101		**************************************	Terreno d	
	1-1		Argilla ma	rrone.
	2			
	> 4			
	3			
	- 1			
	4_			
	5			
	- ° -		5.0	
	6 70 100		6,0 Argilla cor	inclusione di clasti poligenici sub-angolosi
			\centimetri	EI
	7 0 0 0		Ghiaia pol	igenica con clasti sub-arrotondati inglobsti in se argillosa.
			and the second	
		30888330	8,2 Arailla arid	gia passante a marrone.
	9_			ga passarko a manono.
	-			
	10_			
	11 2220=020;		10,8	
			Ghiaia pol	igenica con clasti sub-angolosi inglobati in se limoso-argillosa.
	12		una mauk	e iiinoso-arginosa.
	2000			
	13 00000000			
	14			
	000000000000000000000000000000000000000			
	15_000000000000000000000000000000000000		15,1	
			Argilla di o	colore grigio a volte verdastra con screziature Cono presenti inclusioni marnose.
	16_		Illanoni. 3	ono presenti inclusioni marnose.
	17_			
	18_			
	19_			
	20			
	2~_			
	21_			
	22_			
	23			
	24			
	25_			
	26		26,0	
	-~~			calcareniti in matrice sabbiosa.
	27_ \$100 S 750 S			

	28_ 000750 AC			
	\$10,500 E			
	29			
101	30 20 30 40 50		30.0	
	- TO BUILDING WINDS		(84,4)	

STRATIGRAFIA

SCALA 1:166 Riferimento: 105-132/05 - Lavori di microzonazione sismica nel comune di Gubbio Sondaggio: SA14 Quota: p,c, Data: 27/11/2006 Località: Villa Benveduti Impresa esecutrice: Perigeo Sondaggi Srl Redattore: Dott. Geol. Arnaldo Ridolfi Coordinate: Perforazione: a rotazione a conservazione di nucleo con sonda IPC 830L g R A Pz metri LITOLOGIA Campioni RP VT Prel % RQD % pmf DESCRIZIONE S.P.T Terreno di riporto. 101 Limi argillosi color marrone scuro inglobanti dei clasti calacrei spigolosi centimetrici. Ghiaia subarrotondata prevalente Limi argillosi color marrone inglobanti delle modeste lenti ghiaiose poligeniche a basso sorting e basso grado di arrotondamento. 19 20 Ghiaia poligenica a basso sorting e basso grado di arrotondamento inglobante delle lenti argilloso-limose color marrone. 21 22 23 25 26. 28 29 30 Argilla grigia compatta. 31 32 33 34 35, Bed-rock marnoso arenaceo. 36 39

<u>STRATIGRAFIA</u>

Riferimento: 105-132/05 - Lavori di microzonazione sismica nel comune di Gubbio	Sondaggio: SA15
Località: Villa Benveduti	Quota: p,c,
Impresa esecutrice: Perigeo Sondaggi Srl	Data: 27/11/2006

Coordinate: Redattore: Dott. Coordinate: Redattore: Dott. Coordinate: Perforazione: a rotazione a conservazione di nucleo con sonda IPC Drill 830L	Geol. Arnaldo Ridolfi
8 R A PZ metri LITOLOGIA Campioni RP VT Prel % SPT. N 0-100 mm DESCRIZIO	ONE
101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Limi argillosi color marrone scuro calcarei spigolosi centimetrici. Calcarei spigolosi centimetrici. Ghiaia poligenica a basso sorting arrotondamento inglobante delle argilloso-limoso color marrone sc	ONE
6.	ro inglobanti dei clasti

dott geo! Luciano Giombini — dott geo! Milko Mattiacci — dott. geo! Luca Bombarolere Via Grandi n.10, 06012 Città di Castello - Tel. e Fax 075 8522807 - C.F. 9001 2620549 - P.I. 02389710548

Studio Associato GE.T.A.

Indagini sismiche per P.R.G. Comune di Gubbio

RAPPORTO TECNICO ED INTERPRETAZIONE DATI

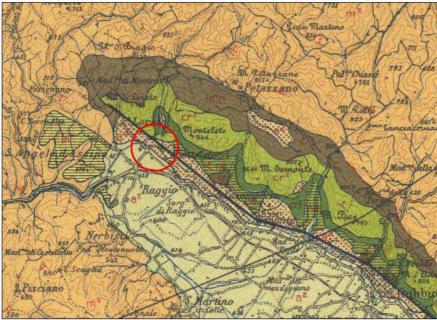
Lavoro su incarico di: dott. geol. Arnaldo Ridolfi

SOMMARIO	
Inquadramento geologico	pag. 2
Ubicazione area di indagine - Dettaglio posizione linee	pag. 3
METODOLOGIE E STRUMENTAZIONE	
Indagine sismica in foro tipo Down-Hole	pag. 4
Indagine sismica a rifrazione	pag. 5
Indagine ReMi	pag. 6
RISULTATI	
Sito 01 - Indagine Down-Hole	pag. 7
Sito 01 - Indagine a rifrazione	pag. 8
Sito 01 - Indagine ReMi	pag. 11
Sito 02 - Indagine Down-Hole	pag. 13
Sito 02 - Indagine a rifrazione	pag. 14
Sito 02 - Indagine ReMi	pag. 17

dott. geol. Luca Bombardiere

dott. geol. Luciano Giombini

dott. geol. Milko Mattiacci

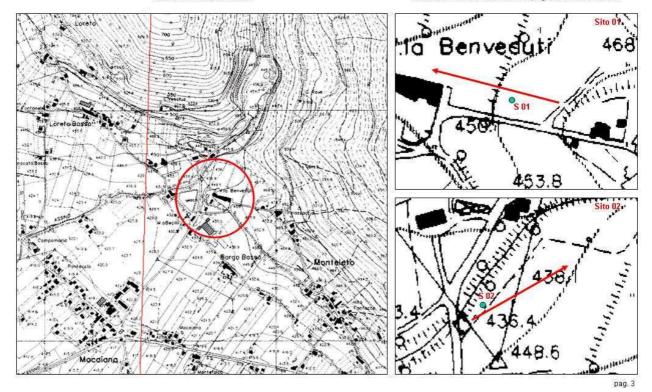

Città di Castello, dicembre 2006

Inquadramento geologico

In frazione Mocaiana, loc Villa Benvenuti, sono state eseguite indagini sismiche di supporto al Piano Regolatore Generale.

Sono stati eseguite due indagini in foro tipo tipo Down-Hole per ottenere il profilo dettagliato di velocità delle onde S. Due profili di sismica a rifrazione con onde P sono stati realizzati in prossimità dei fori di sondaggio per estrapolare lateralmente i risultati del Down-Hole. Infine, con gli stessi stendimenti geofonici dei profili a rifrazione sono state effettuate acquisizioni di rumore ambientale con la tecnica ReMi, per cercare di ottenere informazioni sismostratigrafiche più profonde di quelle raggiunte con i sondaggi.

Le indagini sono state eseguite in zone mediamente acclivi, ubicate alla base dei rilievi carbonatici che delimitano la valle sul lato nord-est. Nelle aree di indagine affiorano ghiaie angolari e mal classate riconducibili a detrito di falda proveniente dall'adiacente rilievo


Ubicazione area di indagine

estratto da: Carta Tecnica Regionale - Scala 1:10.000 Sezioni 300-020 e 300-030

Dettaglio posizione linee

Scala 1:2,000

La freccia indica il verso crescente delle progressive nello stendimento

INDAGINE SISMICA IN FORO TIPO DOWN HOLE

Generalità sul metodo

La prova consiste nel produrre, sulla superficie del terreno, una sollecitazione orizzontale mediante una sorgente meccanica, e nello studiare il treno d'onde, P e S, che si propagano all'interno del terreno alle varie profondità in direzione verticale, con vibrazioni polarizzate nella direzione di propagazione (onde P), e dirette perpendicolarmente alla direzione di propagazione, polarizzate su un piano orizzontale (onde SH). Mediante due ricevitori (geofoni tridimensionali) ancorati alle pareti del foro, a profondità note, viene valutato l'istante di arrivo del treno di onde P e S, rispetto all'istante in cui vengono indotte le sollecitazioni alla sorgente, dividendo quindi per tali valori la distanza (nota) tra sorgente e ricevitori, si può ricavare la velocità delle onde P e S.

Le velocità delle onde P sono state ricavate utilizzando le registrazioni relative alle battute verticali, le velocità delle onde S sono state ricavate utilizzando le registrazioni relative alle battute orizzontali, localizzando il primo arrivo dove si osserva l'inversione di fase dell'impulso S ottenuta con l'inversione del senso di energizzazione. Le velocità delle onde P ed S nel sottosuolo sono state calcolate come trend ricostruito sulle dromocrone.

I grafici delle dromocrone sono costruiti utilizzando i tempi di arrivo corretti. La distanza del punto di battuta dalla boccaforo fa si che i fronti d'onda non viaggino verticali ma inclinati e dunque, la distanza effettivamente percorsa dall'onda è maggiore delle profondità dei ricevitori.

Vengono allora corretti i tempi di arrivo per poter mantenere le posizioni dei ricevitori come riferimenti di profondità.

La formula per la correzione dei tempi di arrivo è $t^* = \frac{z}{d}t = \frac{z}{\sqrt{z^2 + R^2}}$

dove, (* è il tempo corretto, z la profondità del ricevitore, t il tempo osservato nelle tracce di registrazione, d la distanza effettiva tra sorgente e ricevitore ed R la distanza del punto di battuta dalla boccaforo.

Strumentazione utilizzata e parametri di acquisizione

Per l'esecuzione della prova è stata utilizzata la seguente attrezzatura:

- sismografo National Instruments, con convertitore A/D a 16 bit e 32 canali differenziali;
- geofoni trigger di cui uno verticale posto in prossimità della piastra di battuta, l'altro, orizzontale, accoppiato alla trave;
- 2 geofoni triassiali da foro con bloccaggio pneumatico; i sensori al loro interno avevano f.r. = 10 Hz.

L'acquisizione è stata fatta con passo di campionamento pari a 0.05 ms (20000 Hz). La durata delle registrazioni è stata di 300 ms (6000 campioni) di cui 20 ms (400 campioni) di pretrigger.

In acquisizione sono stati utilizzati 7 canali di cui: 6 per le due terne geofoniche e uno per il segnale del trigger che è stato monitorato per assicurarsi del suo buon funzionamento.

Il passo di misura è stato di due metri. Le energizzazioni sono state eseguite con mazza da 8 Kg.

Per ogni punto di misura sono state eseguite tre energizzazioni: una verticale su piastra di alluminio; due orizzontali alle estremità di una trave di battuta metallica, con superficie scabra e accoppiata al terreno attraverso il peso dell'autovettura. Le tre battute sono state eseguite alla distanza di 3.8 e 4.1 metri dalla bocca pozzo rispettivamente per il sondaggio 01 e 02.

I segnali registrati sono stati analizzati dal punto di vista spettrale, corretti per l'offset e filtrati con un passa basso con frequenza di taglio pari a 125 Hz, sufficientemente alta per preservare il contenuto del segnale.

INDAGINE SISMICA A RIFRAZIONE

Generalità sul metodo

Il metodo a rifrazione consiste nel misurare in punti noti posti in superficie i tempi di arrivo delle onde generate da una sorgente di impulsi sismici. Nel caso delle onde S la sorgente di energia è solitamente una massa battente (martello) sull'estremità di una trave appoggiata sul terreno perpendicolarmente all'allineamento dei geofoni. Nel caso delle onde P, l'energizzazione viene realizzata tramite massa battente (martello) o buffalo gun. Le onde generate dalla sorgente vengono registrate tramite un allineamento di geofoni collegati ad un dispositivo di acquisizione che memorizza i dati in formato digitale. I dati acquisiti in campagna consistono dunque in una serie di registrazioni geofoniche nelle quali si individuano i tempi di arrivo per distanze progressive sorgente – geofoni. Le relazioni tempi di arrivo – distanze (dromocrone) vengono poi elaborate e convertite in un profilo stratigrafico caratterizzato da gradienti di velocità o da rifrattori che definiscono unità con velocità uniformi. Tutte le informazioni vengono dunque ricavate in superficie e la struttura del sottosuolo viene ricostruita con differenti metodi interpretativi (metodo delle intercette, metodo del delay time, metodo GRM, metodo ray-tracing, ecc.) che si basano sui principi di propagazione di energia sismica, i quali sono essenzialmente gli stessi che descrivono la propagazione della luce attraverso mezzi trasparenti (Legge di Snell). In accordo alla legge di Snell, qualora la velocità degli strati aumenti in profondità, una porzione dell'energia sismica viene rifratta in superficie. Se ogni strato è isotropo rispetto alla propagazione della onde e la velocità aumenta in profondità, allora il diagramma tempi di arrivo – distanze (grafico delle dromocrone) mostra una serie di segmenti di inclinazione decrescente. Il primo segmento rappresenta le onde che viaggiano in superficie, i successivi rappresentano dei raggi rifratti lungo differenti discontinuità di velocità nel sottosuolo.

Modalità di elaborazione dei dati

In questo lavoro l'interpretazione delle onde P è stata effettuata tramite il programma SeisOpt@2D della Optim LLC (Reno, Nevada). Questo programma utilizza un metodo iterativo denominato generalized simulated annealing. La distribuzione delle velocità di un modello di partenza predefinito viene casualmente perturbata e vengono calcolati i tempi di arrivo con il metodo ray-tracing. I tempi di arrivo calcolati vengono comparati con quelli osservati e viene calcolato l'errore quadratico medio. I modelli che mostrano lo scostamento minore vengono utilizzati per l'iterazione successiva. I modelli conservati sono dunque nuovamente perturbati in maniera casuale e su di essi vengono nuovamente calcolati i tempi di arrivo e lo scostamento con le dromocrone misurate sul terreno. Il processo di iterazione (che mediamente consiste in qualche decina di migliaia di cicil) continua sino ad individuare dei modelli caratterizzati da un errore quadratico medio estremamente basso rispetto ai tempi di arrivo osservati.

Questo metodo risulta particolarmente utile per investigare alcune comuni situazioni geologiche difficilmente risolvibili con i metodi delle intercette e plus-minus. (i.e. aumento lineare delle velocità con la profondità, inversioni ed anomalie di velocità, variazioni laterali dello spessore degli strati, faglie).

Sturmentazione utilizzata e parametri di acquisizione

Per l'esecuzione della prova è stata utilizzata la seguente attrezzatura:

- sismografo National Instruments, con convertitore A/D a 16 bit e 32 canali differenziali;
- trigger a chiusura di contatto con la piastra di battuta;
- energizzazione con mazza da 8 Kg;
- 24 geofoni verticali da superficie Geospace X-Phone, f.r. = 10 Hz;

ed i seguenti parametri di acquisizione

- frequenza di campionamento = 5000 Hz;
- lunghezza registrazioni = 2000 campioni;
- pretrigger = 200 campioni;

pag. 5

INDAGINE REFRACTION MICROTREMOR (ReMi)

Generalità sul metodo

Il profilo verticale di velocità delle onde S può essere ricavato per modellazione delle velocità di fase delle onde di superficie (Rayleigh e/o Love). In particolare la curva velocità di fase - periodo delle onde di Rayleigh (denominata curva di dispersione), può essere convertita nel profilo Vs - profondità.

Le onde di Rayleigh costituiscono un particolare tipo di onde di superficie che si trasmettono sulla superficie libera di un corpo isotropo ed omogeneo e sono il risultato dell'interferenza tra onde di pressione (P) e di taglio verticali (Sv). In un mezzo stratificato queste onde sono di tipo dispersivo e vengono denominate pseudo-Rayleigh.

La dispersione è una deformazione di un treno d'onde dovuta ad una variazione di velocità con la frequenza. Le componenti a frequenza minore penetrano più in profondità rispetto a quelle con frequenza maggiore e presentano normalmente velocità di fase più elevate.

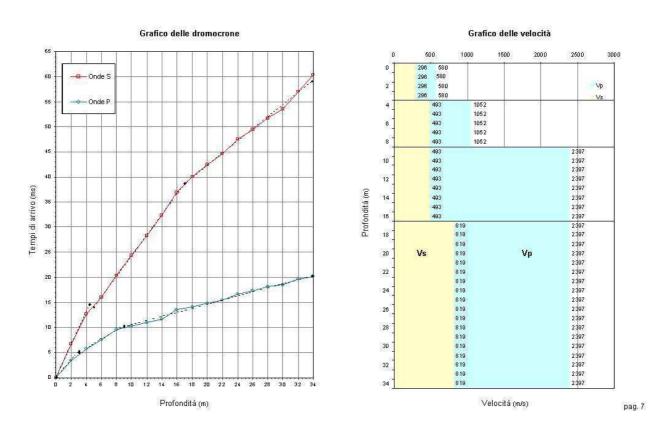
Il metodo *Refraction Microtremor* (Louie, 2001), consente di acquisire rapidamente una curva di dispersione delle onde di Rayleigh registrando i microtremori ambientali con la strumentazione classica utilizzata per la sismica a rifrazione per onde P. Viene utilizzato uno stendimento lineare di geofoni (da 12 a 48) con bassa frequenza di risonanza (4-14 Hz raccomandati); il tempo di registrazione è normalmente 15-30 sec. Le registrazioni vengono elaborate tramite la trasformata bidimensionale *frequenza - reciproco della velocità* (p-f). Questo tipo di analisi spettrale produce dunque uno spettro di potenza rappresentato in un grafico p-f.

In questo grafico è possibile individuare visivamente le onde di Rayleigh sulla base del carattere dispersivo (tendenza all'aumento di velocità con la frequenza), della coerenza di fase e della potenza significativa. La curva di dispersione ottenuta direttamente dal grafico p-f viene comparata con quella ottenuta analiticamente da un modello preliminare di profilo Vs; il modello viene dunque variato progressivamente sino a produrre una curva di dispersione simile a quella osservata.

Modalità di elaborazione dei dati

L'elaborazione dei dati (pre-elaborazione, analisi spettrale, curva di dispersione, inversione) è stata eseguita con il programma commerciale ReMi® della Optim LLC (Reno, Nevada).

Sturmentazione utilizzata e parametri di acquisizione

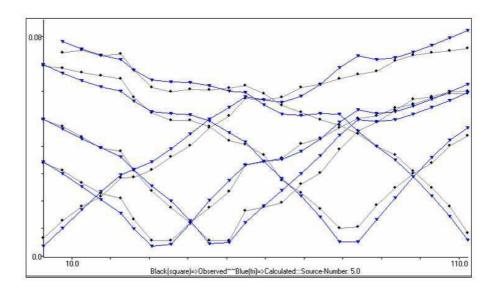

Per l'esecuzione della prova è stata utilizzata la seguente attrezzatura:

- sismografo National Instruments, con convertitore A/D a 16 bit e 32 canali differenziali;
- 24 geofoni verticali da superficie Geospace X-Phone, f.r. = 10 Hz;

ed i seguenti parametri di acquisizione:

- frequenza di campionamento = 500 Hz;
- lunghezza registrazioni = 32 secondi;
- numero registrazioni = 10.

RISULTATI SITO 01 - INDAGINE DOWN-HOLE

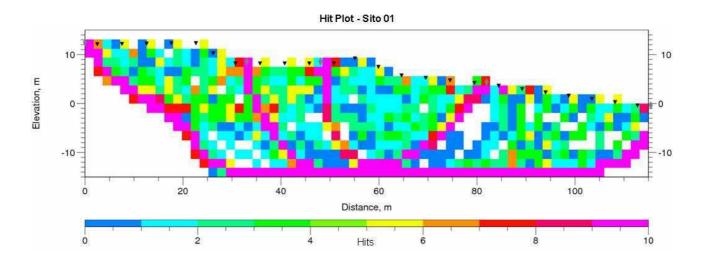


RISULTATI SITO 01 - INDAGINE SISMICA A RIFRAZIONE

Dromocrone misurate e dromocrone calcolate

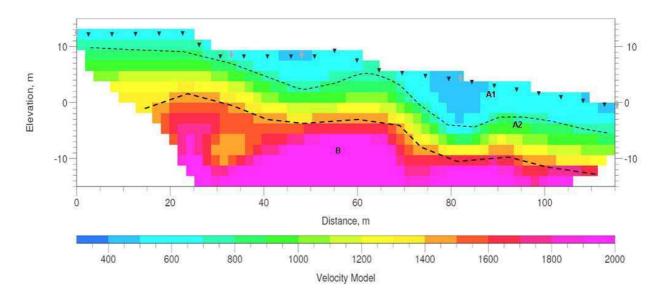
I grafico seguente le dromocrone ottenute dal picking dei primi arrivi (linee nere) e quelle calcolate (linee blu) con la tecnica del ray-tracing sulla base del modello proposto.

Nel caso del profilo 1 il numero di iterazioni calcolate dall'algoritmo per ottenere il presente modello è di oltre 40000 e l'errore quadratico fra le dromocrone misurate e quelle calcolate è pari a 7.92·10-8 sec², ovvero una discreta corrispondenza anche in considerazione dei tempi di arrivo finali relativamente lunghi.

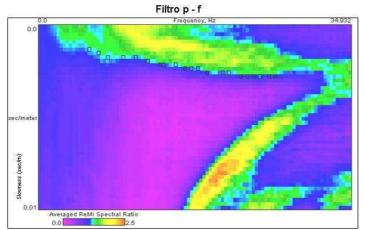


Copertura del sottosuolo da parte dei raggi sismici

Nel grafico di questa pagina è raffigurato come i raggi sismici hanno viaggiato nel sottosuolo. Ogni cella del modello viene attraversata un numero di volte (Hits) diverso in base al percorso dei raggi. Maggiore è il numero di volte, maggiore è l'attendibilità del valore di velocità calcolato per quella cella. Normalmente con un numero di volte superiore a 3 il dato è ben attendibile. Altra caratteristica importante è che il sottosuolo sia attraversato in maniera omogenea senza lasciare zone vuote troppo estese.


Nel profilo si osserva una copertura del sottosuolo ben distribuita ed una concentrazione maggiore dei raggi nell'intervallo di profondità attorno alla base del modello dove si localizza il rifrattore principale.

Nel profilo è anche riportata la posizione dei 24 geofoni (triangoli neri), distanziati di 5 m, e dei 5 punti di energizzazione (rombi grigi).

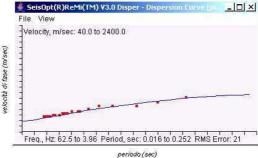

pag. 9

Modello di velocità delle onde P

La sezione sopra riportata rappresenta il modello di velocità dello onde P lungo lo stendimento effettuato; la profondità massima di indagine risulta pari a circa 30 metri. Si osserva una stratigrafia costituita da una coltre da mediamente a molto addensata e/o consistente, con velocità crescenti da 300 a 1200 metri (strato A) sovrastante del materiale molto addensato e/o consistente (strato B) con velocità mediamente superiori a 2000 m/sec. La coltre superficiale può essere suddivisa in due sottounità sulla base dei valori di velocità. I contatti fra le differenti unità appaiono molto irregolari alla scala di indagine e non riconducibili a superfici di strato circa-planari.

RISULTATI SITO 01 - INDAGINE REMI

Il rumore ambientale ha fornito un intervallo di frequenze utili pressoché continuo. I punti che costituiscono la curva di dispersione sono stati individuati piuttosto agevolmente delimitando inferiormente una fascia caratterizzata da un andamento generalmente dispersivo, coerenza


Dalla curva di dispersione individuata nel filtro p - f si ottenere l'andamento della velocità delle onde S con la profondità. Tale andamento si ricava costruendo una successione di strati caratterizzati da spessore e velocità tali che la curva di dispersione calcolata per il


suddetto modello (linea blu dei grafici a lato) si avvicini il più possibile a quella misurata

di fase e potenza significativa

(punti rossi dei grafici a lato).

Curve di dispersione

periodo (sec)

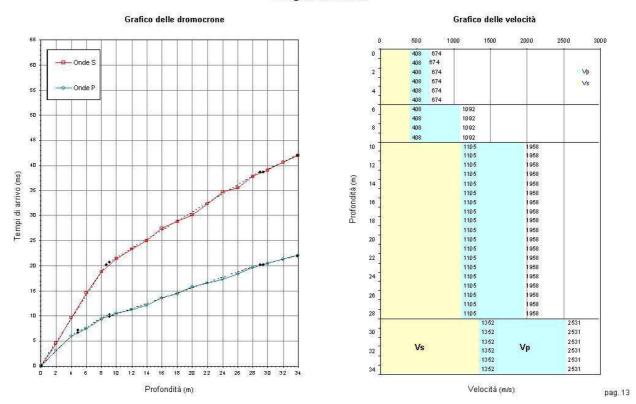
In questo caso sono stati elaborati due modelli dai quali é stato possibile approssimare in modo piuttosto preciso l'andamento delle curve di dispersione sperimentali. L'errore quadratico medio fra le curve sperimentali e quelle calcolate è rispettivamente pari a 21 e 16. Nella pagina seguente vengono mostrato i due modelli sismostratiorafici elaborati.

pag. 11

Profili verticali Vs

I due modelli stratigrafici dai quali sono state ricavate le curve di dispersione analitiche sono rappresentati dai profili verticali Vs blu e verde. I due modelli sono stati elaborati assumendo come andamento delle Vs nei primi 34 metri quello ricavato dall'indagine Down Hole (curva rossa). In questo modo (limitando cioè la variabilità nei primi 30 metri) si è potuto investigare con un grado di approssimazione minore le variazioni di velocità da 30 sino alla profondità massima di indagine (i.e. 75 metri).

Si sottolinea che l'indagine ReMi media le geometrie stratigrafiche di una porzione di sottosuolo molto ampia al di sotto dello stendimento di acquisizione. Pertanto, le profondità individuate sono quelle medie lungo tutto il profilo di acquisizione. Di seguito vengono descritte le unità osservabili

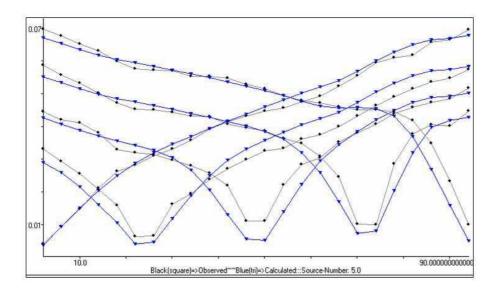

L'unità A (definita sulla base dell'indagine Down Hole) mostra delle Vs comprese fra 293 e 500 m/sec ed è riferibile a depositi da mediamente a molto addensati e/o consistenti (sottounità A1 e A2). La base è posta a profondità comprese fra 15 e 17

L'unità B (definita sulla base dell'indagine Down Hole) è caratterizzata da Vs pari a circa 820 m/sec, riferibili a depositi molto rigidi, comunque equivalenti dal punto di vista sismico a basamento litoide.

L'unità C è caratterizzata da Vs molto alte, comprese fra 1041 e 1505 m/sec, ed è riferibile anch'essa a basamento litoide o a suoli comunque molto rigidi, dunque sismicamente equivalenti a materiale litoide. I due modelli elaborati suggeriscono che il tetto di questa unità si trovi a profondità comprese fra 47 e 63 metri dal p.c.

Risultati Sito 02

Indagine Down Hole

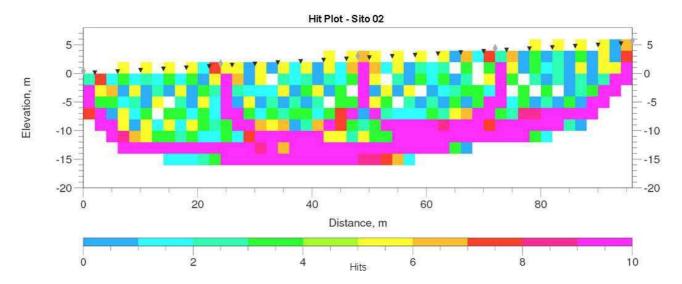


RISULTATI SITO 02 - INDAGINE SISMICA A RIFRAZIONE

Dromocrone misurate e dromocrone calcolate

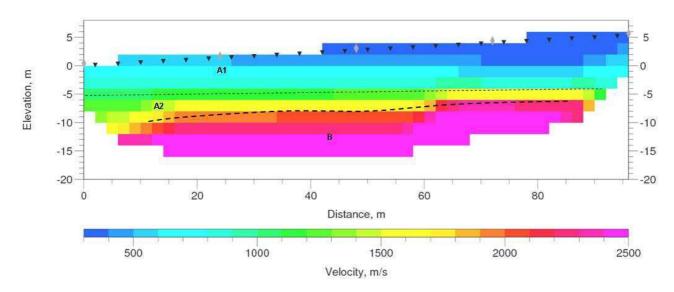
I grafico seguente le dromocrone ottenute dal picking dei primi arrivi (linee nere) e quelle calcolate (linee blu) con la tecnica del ray-tracing sulla base del modello proposto.

Nel caso del profilo 1 il numero di iterazioni calcolate dall'algoritmo per ottenere il presente modello è di circa 44000 e l'errore quadratico fra le dromocrone misurate e quelle calcolate è pari a 9.43 ·10-6 sec², ovvero una discreta corrispondenza anche in considerazione dei tempi di arrivo finali relativamente lunghi.



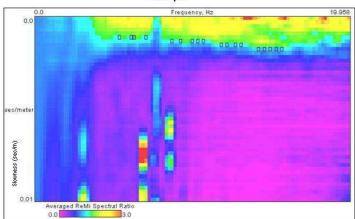
Copertura del sottosuolo da parte dei raggi sismici

Nel grafico di questa pagina è raffigurato come i raggi sismici hanno viaggiato nel sottosuolo. Ogni cella del modello viene attraversata un numero di volte (Hits) diverso in base al percorso dei raggi. Maggiore è il numero di volte, maggiore è l'attendibilità del valore di velocità calcolato per quella cella. Normalmente con un numero di volte superiore a 3 il dato è ben attendibile. Altra caratteristica importante è che il sottosuolo sia attraversato in maniera omogenea senza lasciare zone vuote troppo estese.


Nel profilo si osserva una copertura del sottosuolo ben distribuita ed una concentrazione maggiore dei raggi nell'intervallo di profondità attorno alla base del modello dove si localizza il rifrattore principale.

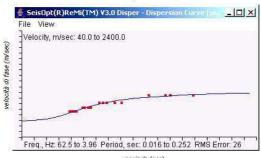
Nel profilo è anche riportata la posizione dei 24 geofoni (triangoli neri), distanziati di 4 m, e dei 5 punti di energizzazione (rombi grigi).

pag. 15


Modello di velocità delle onde P

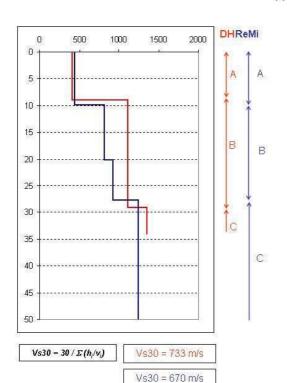
La sezione sopra riportata rappresenta il modello di velocità dello onde P lungo lo stendimento effettuato; la profondità massima di indagine risulta pari a circa 20 metri. Si osserva una coltre da mediamente a molto addensata e/o consistente, con velocità crescenti da 300 a 1200 metri (strato A) sovrastante del materiale molto addensato e/o consistente (strato B) con velocità mediamente superiori a 1800 m/sec. La coltre superficiale può essere suddivisa in due sottounità sulla base dei valori di velocità.

RISULTATI SITO 02 - INDAGINE REMI



In questo caso il filtro p-f ottenuto dalle registrazioni dei microtremori mostra alcune discontinuità, nello spettro inoltre sono poco rappresentate le frequenze alte delle onde superficiali. I punti che costituiscono la curva di dispersione sono stati tuttavia individuati agevolmente delimitando inferiormente una fascia caratterizzata da un andamento generalmente dispersivo, coerenza di fase e potenza significativa.

Dalla curva di dispersione individuata nel filtro p - f si ottiene l'andamento della velocità delle onde S con la profondità. Tale andamento si ricava costruendo una successione di strati caratterizzati da spessore e velocità tali che la curva di dispersione calcolata per il suddetto modello (linea blu del grafico a lato) si avvicini il più possibile a quella misurata (punti rossi del grafico a lato).


Curve di dispersione

In questo caso l'errore quadratico medio fra la curva di dispersione analitica (linea blu) e di quella sperimentale è piuttosto contenuto (circa 26). Nella pagina seguente viene mostrato il modello sismostratigrafico elaborato.

pag. 17

Profili verticali Vs

Il modello stratigrafico dal quale è stata ricavata la curva di dispersione analitica è rappresentata dal profilo verticale Vs blu. Il profilo è mostrato con la stratigrafia Vs ricavata dall'indagine *Down Hole* (profilo rosso). Tutti i modelli elaborati preliminarmente indicano al di sotto della profondità massima del Down Hole e sino alla profondità massima di indagine (i.e. 50 metri) una stratigrafia molto omogenea.

Si sottolinea che l'indagine ReMi media le geometrie stratigrafiche di una porzione di sottosuolo molto ampia al di sotto dello stendimento di acquisizione. Pertanto, le profondità individuate sono quelle medie lungo tutto il profilo di acquisizione. Questo è uno dei motivi potenziali con il quale interpretare la differenza di velocità e profondità fra la stratigrafie desunte dal Down Hole e dall'indagine ReMi. Di seguito vengono descritte le unità osservabili.

L'unità A mostra delle Vs pari comprese fra 408 e 440 m/sec ed è riferibile a depositi da mediamente a molto addensati e/o consistenti. La base è posta a profondità comprese fra 9 e 10 metri.

L'unità B è caratterizzata da Vs comprese fra 814 e 1105 m/sec, riferibili a depositi molto rigidi, comunque equivalenti dal punto di vista sismico a basamento litoide.

L'unità C è caratterizzata da Vs molto alte, comprese fra 1240 e 1352 m/sec, ed è riferibile anch'essa a basamento litoide o a suoli comunque molto rigidi, dunque sismicamente equivalenti a materiale litoide. Il tetto di questa unità si trovi a profondità comprese fra 27.5 e 29 metri dal p.c.

33.7.4 Documentazione fotografica

Sondaggio SA1 cassette da 1 a 6

Sondaggio SA14 cassette da 1 a 8

Sondaggio SA15 cassette da 1 a 8

33.7.5 Cartografia

Si riportano di seguito gli allegati cartografici essenziali ai fini della valutazione del rischio sisimico.

Per una immediata comprensione degli stessi si è pensato di adottare il seguente ordine:

- legenda carta geologica;
- carta geologica su C.T.R. a scala 1:5.000;
- profili geologici e di suscettibilità sismica locale a scala 1:2.000;
- legenda carta geomorfologica;
- carta geomorfologica su C.T.R. a scala 1:5.000;
- legenda carta litotecnica;
- carta litotecnica su C.T.R. a scala 1:5.000;
- profili litotecnici e di suscettibilità sismica locale a scala 1:2.000;
- legenda carta delle aree suscettibili di amplificazione sismica;
- carta delle aree suscettibili di amplificazione sismica su C.T.R. a scala 1:5.000.

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA GEOLOGICA

LEGENDA

DETRITI DI FALDA

Detriti attuali - recenti. Depositi essenzialmente gravitativi, a granulometria variabile, da ben classati a fortemente eterometrici. I clasti sono prevalentemente a spigoli vivi o subangolosi, per lo più in accumuli massivi o grossolanamente stratificati.

Pleistocene-Olocene

ALLUVIONI ANTICHE

Le alluvioni non hanno più alcun rapporto con la dinamica dell'alveo attuale. Limi sabbiosi e limi argillosi con inglobati depositi lentiformi e nastrifomi di ghiaie e ghiaie sabbiose. Ghiaie sciolte o debolmente cementate, talora a stratificazione incrociata, con intercalazioni di lenti di sabbie bruno-giallastre e di argille grigie.

Sovrassegni e sigle per:

Ghiaie e ghiaie con sabbia - pallinato **gs**Sabbie e sabbie limose - puntinato **sl**Limi, limi argillosi e argille - tratteggiato **la**

COMPLESSO TERRIGENO UMBRO

FORMAZIONE MARNOSO ARENACEA

Alternanza di arenarie torbiditiche, marne e marne siltose con rapporto arenaria/pelite in genere minore di 1. Sono presenti megastrati, sia arenitici di provenienza alpina che calcarenitici, utilizzabili come strati guida.

Membro 1

(associazione pelitico arenacea calcarenitica basale)

Torbiditi pelitico arenacee e calcareo clastiche in strati da sottili a molto spessi con rapporto A/P molto variabile ma in genere <1/4. Contiene lo strato Contessa (Cs) e numerosi altri strati notevoli, con caratteristiche tali da essere potenzialmente utilizzabili come strati guida. La parte di successione posta subito al di sopra del Contessa e la parte sommitale del membro corrispondono a litozone caratterizzate dal rapido susseguirsi di strati calcarenitici di spessore variabile compreso tra 0.2 m a 1.5 m circa e molto ravvicinati fra loro (almeno 8 strati in circa 100 m di successione). Lo spessore non è precisamente valutabile poiché non affiora la base.

Langhiano superiore-Serravalliano superiore

Giacitura ed inclinazione degli strati

Traccia di sezione

INDAGINI GEOGNOSTICHE

Prove penetrometriche dinamiche (DPHS)

Prove penetrometriche statiche (CPT)

Sondaggi meccanici a conservazione di nucleo

Sismica a rifrazione

Refraction Microtremor (ReMi)

INDAGINI GEOGNOSTICHE DI RIFERIMENTO

Prove penetrometriche dinamiche (DPHS)

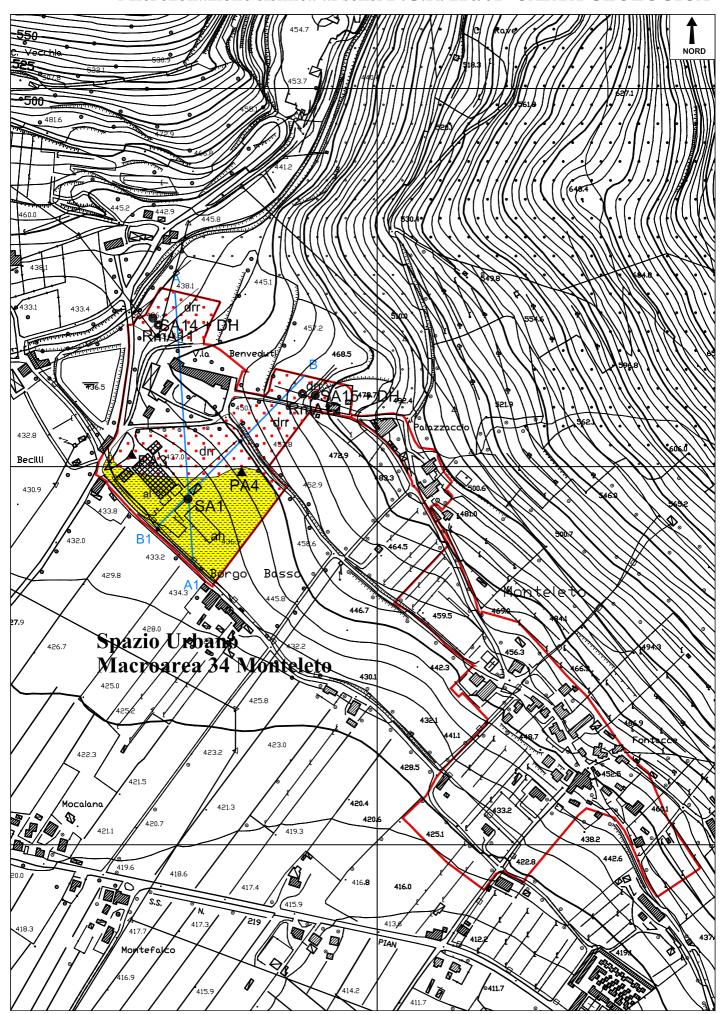
Prove penetrometriche statiche (CPT)

Sondaggi meccanici a conservazione di nucleo

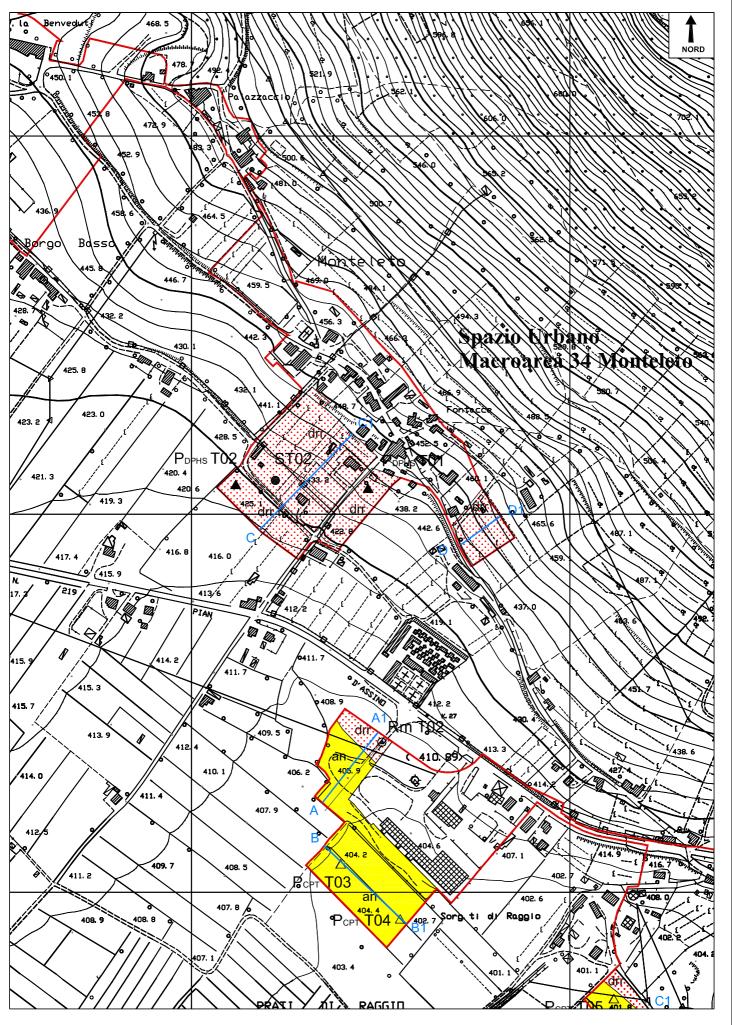
Sondaggi meccanici a distruzione di nucleo

Scavo

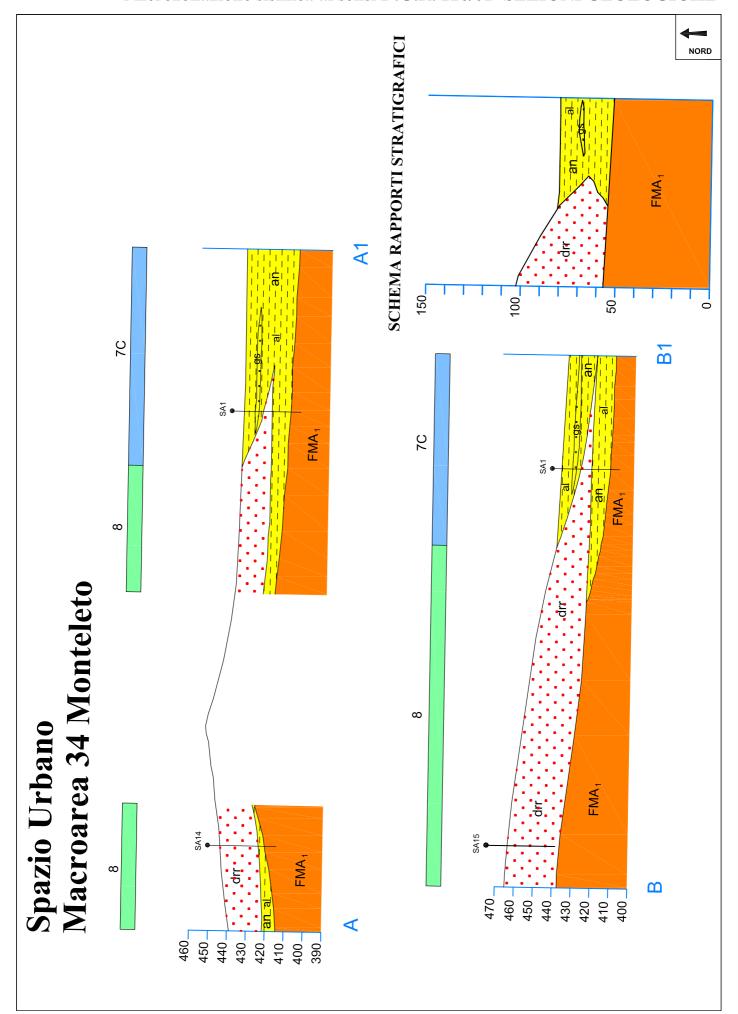
Macroaree urbane

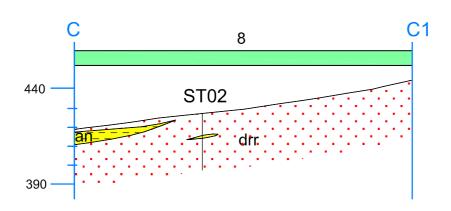


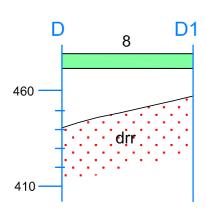
Macroaree dei centri rurale



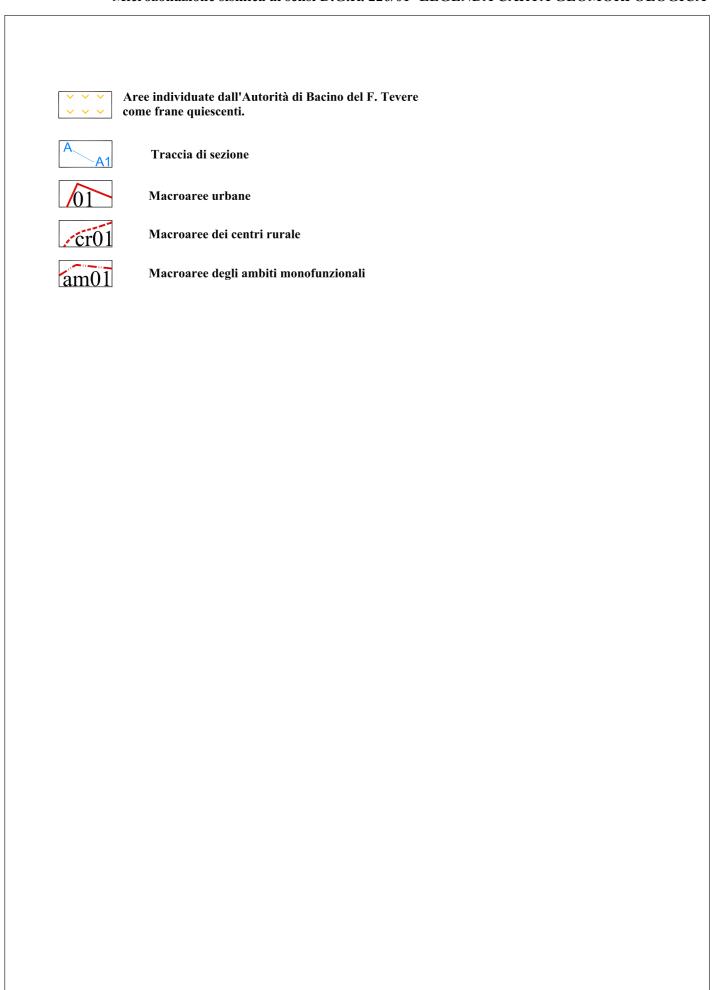
Macroaree degli ambiti monofunzionali

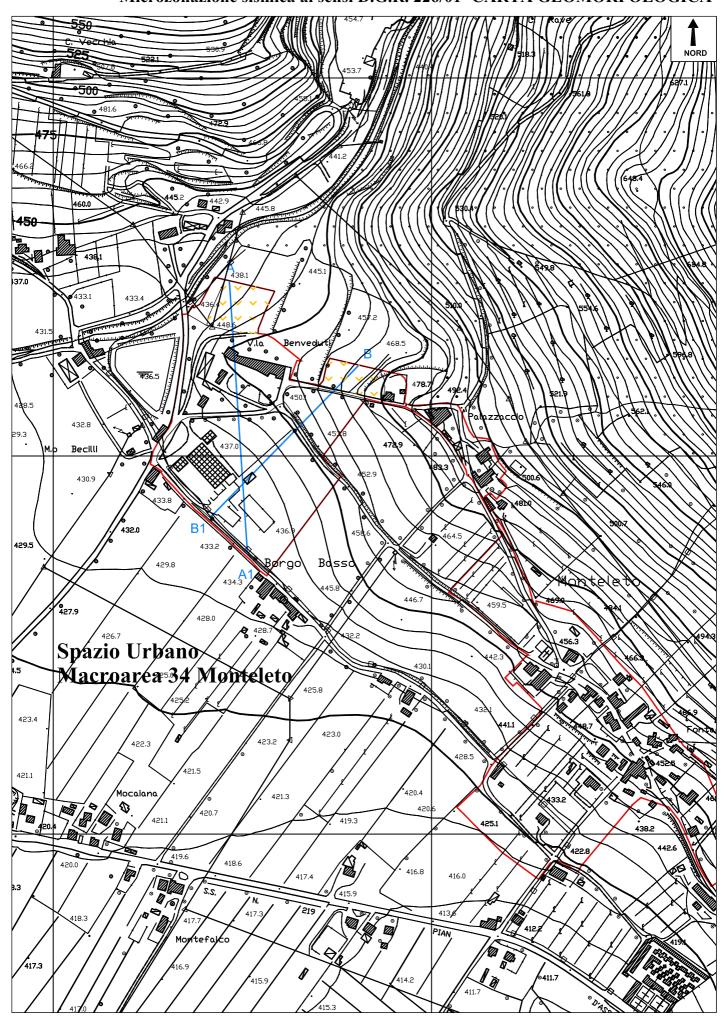

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOLOGICA


Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOLOGICA

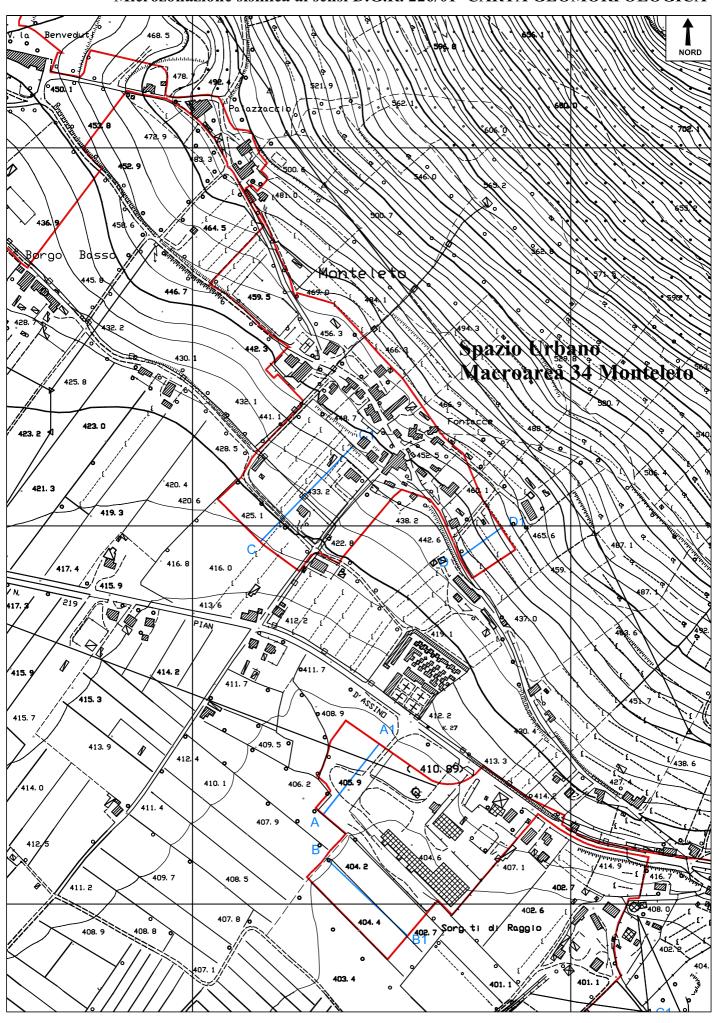


scala 1:2.000 Microzonazione sismica ai sensi D.G.R. 226/01- SEZIONI GEOLOGICHE


Microzonazione sismica ai sensi D.G.R. 226/01- SEZIONI GEOLOGICHE



Spazio Urbano Macroarea 34 Monteleto


Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA GEOMORFOLOGICA

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOMORFOLOGICA

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA GEOMORFOLOGICA

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA LITOTECNICA

SUBSTRATO

L2

Materiale lapideo stratificato o costituito da alternanze di diversi litotipi:

L2A unico litotipo stratificato

L2B2 più litotipi stratificati (senza predominanza

di calcari e argille)

L2B3 più litotipi stratificati (a predominanza

di argille e/o marne)

COPERTURA E SUBSTRATO ALTERATO

L5

Materiali granulari sciolti o poco addensati:

L5a - a prevalenza ciottolosa (pallinato gs)

L5b - a prevalenza sabbiosa (puntinato sl)

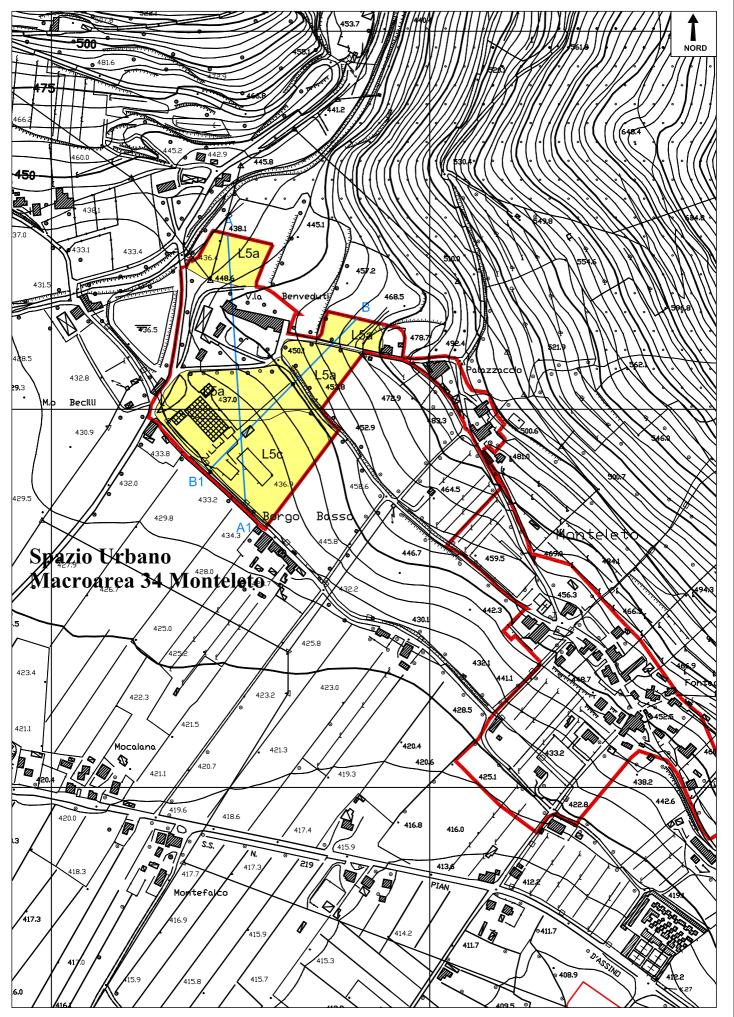
L5c - a prevalenza limo-argillosa/argillo-limosa (tratteggiato la)

L6

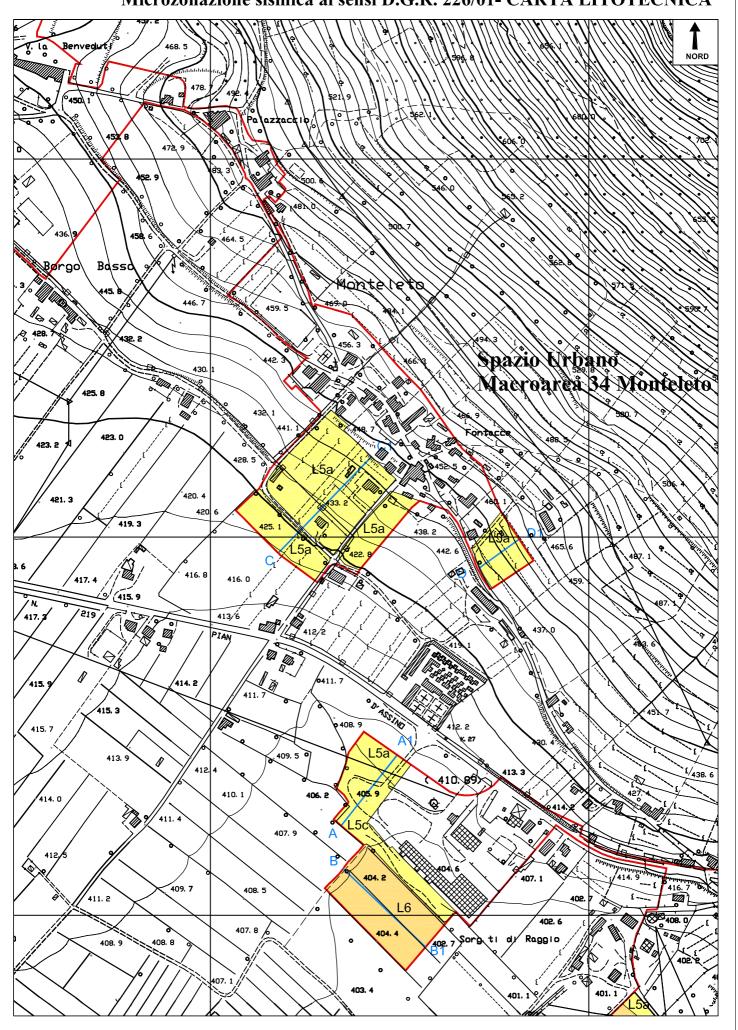
Materiali coesivi normalconsolidati

Traccia di sezione

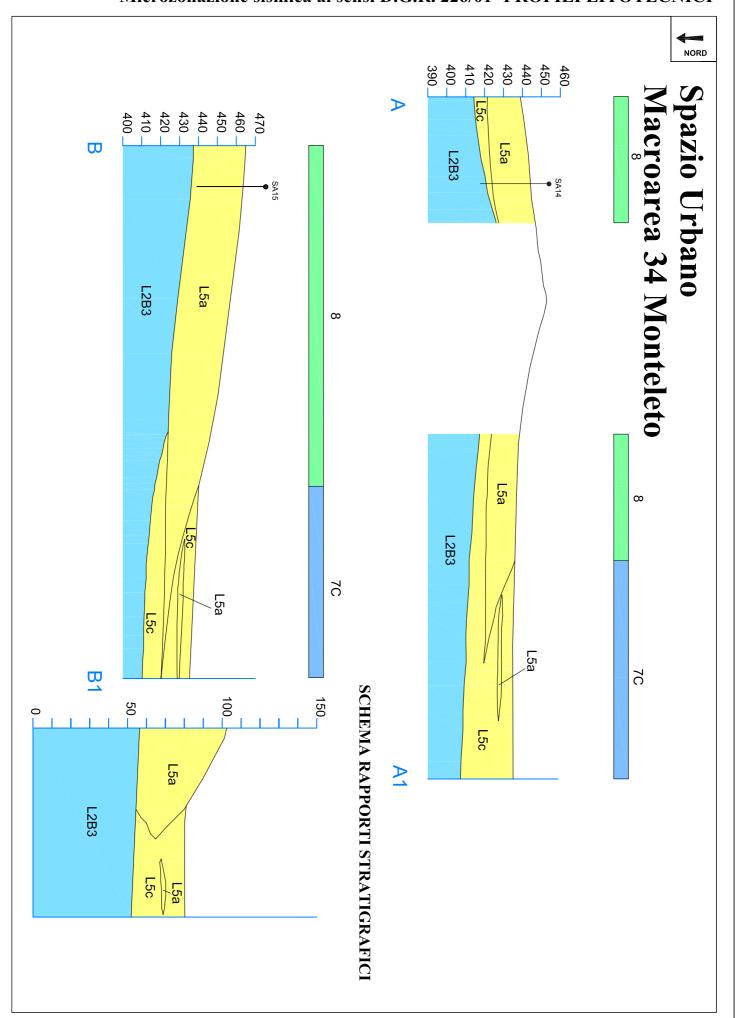
Macroaree urbane

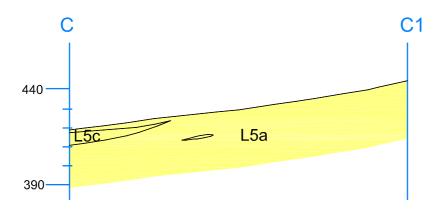


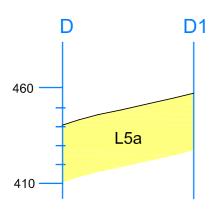
Macroaree dei centri rurale



Macroaree degli ambiti monofunzionali


scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA LITOTECNICA


scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA LITOTECNICA



scala 1:2.000 Microzonazione sismica ai sensi D.G.R. 226/01- PROFILI LITOTECNICI

Spazio Urbano Macroarea 34 Monteleto

Microzonazione sismica ai sensi D.G.R. 226/01- LEGENDA CARTA DELLE ZONE SUSCETTIBILI DI AMPLIFICAZIONE SISMICA O INSTABILITA' DINAMICHE LOCALI

TIPOLOGIA DELLE SITUAZIONI

RIFERIMENTO NELLE CARTE DI BASE

7

Zona di fondovalle:

L5, L6

detrito=A travertino=B fluvio lacustre limoso argilloso e alluvioni limoso argillose=C fluvio lacustre sabbioso ghaioso e alluvioni sabbioso ghiaiose=D

8

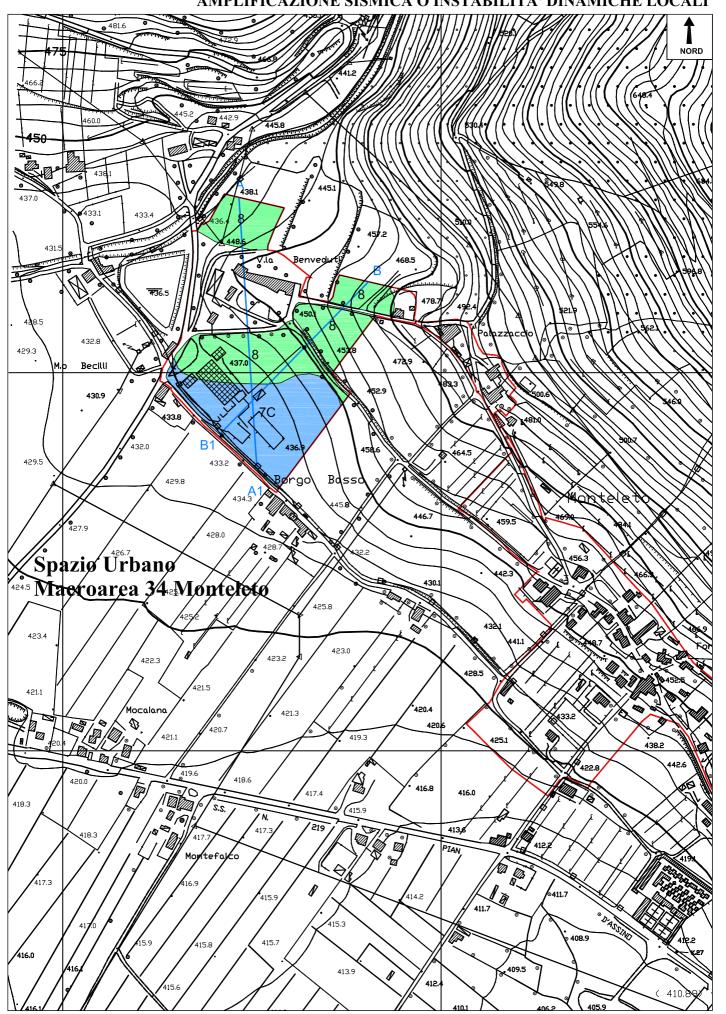
Zona pedemontana di falda di detrito

drr, dra, G7

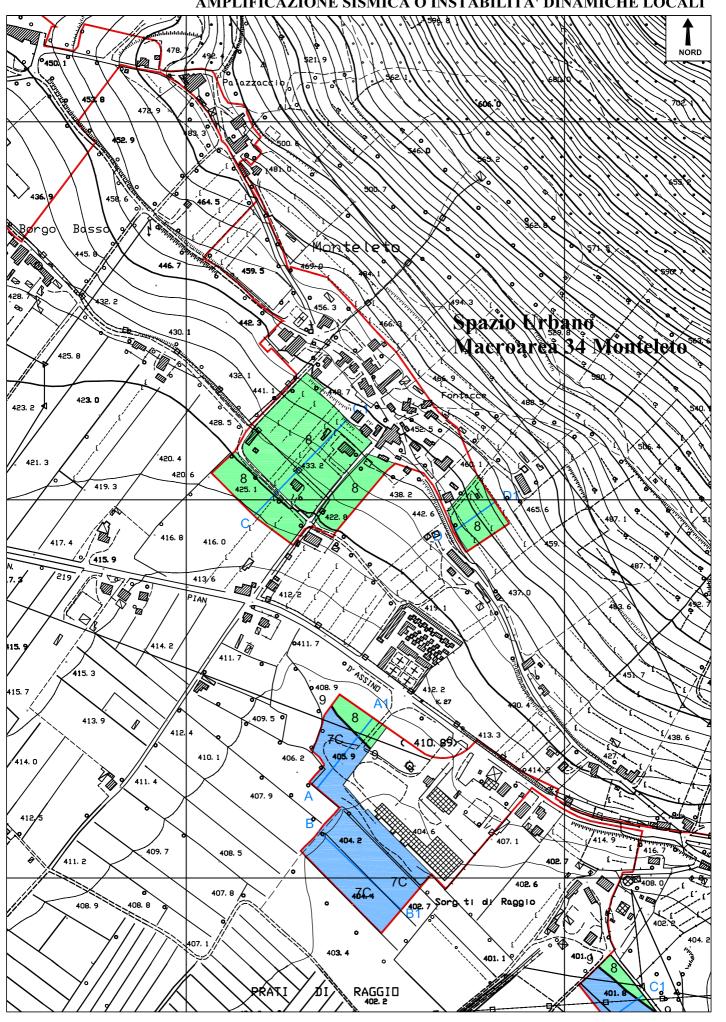
e cono di deiezione

Traccia di sezione

Macroaree urbane



Macroaree dei centri rurale



Macroaree degli ambiti monofunzionali

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA DELLE ZONE SUSCETTIBILI DI AMPLIFICAZIONE SISMICA O INSTABILITA' DINAMICHE LOCALI

scala 1:5.000 Microzonazione sismica ai sensi D.G.R. 226/01- CARTA DELLE ZONE SUSCETTIBILI DI AMPLIFICAZIONE SISMICA O INSTABILITA' DINAMICHE LOCALI

